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Abstract

We present an algorithm mainly designed to reconstruct Digital El-
evation Maps (DEM). Our approach relays on a fast and highly
controllable fractal-based algorithm, we are able to create DEMs
according to given constraints. Thus, these constraints can be given
as scattered dataset of elevations obtained by satellite, our method
supersamples this data and creates the according smooth terrain sur-
face. Moreover, as a painter can make a sketch of his model, the
final user can give or edit the main characteristics, local details and
morphology, of his wanted DEM instantaneously obtaining the re-
sulting terrain surface. Note that there is no limitation on the num-
ber of local constraints (that could vary from 0 to the number of
points of the final DEM). Thus, the method we propose gives the
ability to modify the global aspect (the surface behavior) as well
as to constrain any local detail of the final terrain model. This pa-
per presents the algorithm and reconstruction examples. Using a
Root Mean Square Error computation between an original model
and its downsampled-then-reconstructed version, the results con-
firm the method good behavior and show its efficiency. Other vari-
ous terrain models and alternative applications are presented.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Fractals; I.3.3 [Computer Graphics]: Pic-
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puter Graphics]: Computational Geometry and Object Modeling—
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1 Introduction

Generating realistic terrain models is an important topic in com-
puter graphics and it has been addressed with different approaches
for four decades. Terrain models are useful in many applications in-
cluding virtual reality, army, geographical information systems, re-
gional planing, geology, cinema, video games and especially flight
simulations. Today with satellites, even if we can get gigabytes of
more detailed real elevation datasets, the importance of the topic re-
mains the same; we always want more details and even have more
application fields like problems of data compression or restoration.
Thus, the successive methods or software suites try to provide more
and more detailed terrain models and sometimes their erosion along
time.

This paper focuses on creating terrain surfaces starting from scat-
tered datasets of elevations that can be obtained by satellite or other
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sources of geological data acquisition. We want to obtain, much
more rapidly, the best approximation of the original DEMs. We are
also interested in generating terrains from scratch or according to
the user sketches. Thus, to create models in an interactive way, the
efficiency of the chosen method becomes very important.

There are many differences between the algorithms used in terrain
modeling. Nevertheless, we can classify them into families, the
fractal-based methods, the fractal and physically based methods,
the physically-based methods, and other miscellaneous methods
that can have common points with the others.

The fractal algorithms are generally faster, produce varied relief
maps (these methods can produce approximations of terrain rough-
ness), most of time from scratch: ones are geometric [Mandelbrot
1983; Fournier et al. 1982; Miller 1986; Lewis 1987; Arakawa and
Krotkov 1996] and others are procedural [Perlin 1985; Ebert et al.
2003], but often are not easily restrictable and also suffer from lack
of realism. For example, hydraulic erosion is not or roughly imi-
tated. Rare are those which are able to create terrains according to
given fixed constraints. In [Kelley et al. 1988], Kelley et al. pro-
pose an approach where a generated water drainage network con-
strains a simple terrain surface, thus the relief is modeled through
the water erosion process, an improvement of this approach was
given in [Nagashima 1998]. In [Prusinkiewicz and Hammel 1993]
Prusinkiewicz and Hammel describe a method, in a single inte-
grated process, that models mountains with rivers using context-
sensitive rewriting mechanisms. Otherwise, we have the fractal and
physically based methods. In [Musgrave et al. 1989], Musgrave et
al. have proposed one of the most realistic results by using simula-
tions of hydraulic and thermal erosion on fractal terrains. Note that
these three last methods do not give the end user the ability to fix
his own constraints and that the last one can suffer from time com-
plexity. A first solution is given by Belhadj and Audibert [Belhadj
and Audibert 2005a] where they propose to generate, using fractal-
based algorithm, realistic-looking terrains around simply precom-
puted ridge and river networks. Their second approach, presented
in [Belhadj and Audibert 2005b], produces better interpolations us-
ing a bottom-up algorithm. Moreover the user is able to fix his own
ridge lines, obtaining the corresponding river network and finally
the entire DEM.

In addition, there is the family of the physically based methods.
All of them are too complex and can not lead to the final result in
an interactive way. Nevertheless, we can find variable degrees of
complexity, i.e. a simple model based on velocity fields of water
flow [Chiba et al. 1998] or a more complex one [Benjamin Neid-
hold 2005] that runs in interactive mode. Generally, these methods
are used to reproduce the various erosion phenomena, the used data
structures are sometimes more complex than a DEM, i.e. layered
[Benes and Forsbach 2001a; Benes and Arriaga 2005] representa-
tion is used to get closer to the geological model, the results have
more realistic aspect but the complexity is usually greater.

Finally, there are other various methods that can produce models
under constraints and that focus on: surface approximations [Ve-
muri et al. 1997; Pouderoux et al. 2004], decomposition [Danovaro
et al. 2003] or recomposition [Zhou et al. 2007; Brosz et al. 2006;
Chiang et al. 2005; Ong et al. 2005] and deformation [Stachniak



and Stuerzlinger 2005]. First can consist in generating a terrain
model by computing the interpolation of point clouds or contour
lines. In [Pouderoux et al. 2004] the authors managed to obtain
good approximations of scattered (downsampled) elevation datasets
using radial basis functions. Other methods use patches [Zhou
et al. 2007], small-scale [Brosz et al. 2006] or microscopic [Chiang
et al. 2005] features of existing terrains to synthesize new ones that
satisfy the user macroscopic constraints (global constraints). The
method presented in [Stachniak and Stuerzlinger 2005] deforms an
initial fractal terrain by applying local modifications to satisfy a set
of various fixed constraints. Most of these methods suffer from ei-
ther time and/or manipulation complexity.

Thus, for its efficiency, a fractal-based approach is preferable and
we have chosen to base a part of our work on the “Bottom-Up”
approach of Midpoint Displacement methods proposed in [Belhadj
and Audibert 2005b] : the Midpoint Displacement Inverse process
(MDI).

We present a fractal-based algorithm, called the Morphologically
Constrained Midpoint Displacement (MCMD) and based on im-
provements of the classical midpoint displacement methods and
the MDI algorithm. Our new model satisfies several kinds of
initial constraints given by the user. Our model can either re-
build DEMs from partial elevation datasets, or generate them from
scratch. The given constraints are expressed as fixed elevations (lo-
cal constraints) on the initial DEM and as curvature constraints on
the global aspect of the final surface (i.e. bumped or ridged). The
obtained models do not suffer from steep slope artifacts.

In the following, we will focus on the approach presented in [Bel-
hadj and Audibert 2005b] and underline its drawbacks. We will
explain why this method can not satisfy reconstruction constraints
and give our specific implementation of the classical midpoint dis-
placement methods (MD). This improvement of the MD methods
is a part of the MCMD model, it constraints the obtained surface
curvature. After we explain why constraints can not be satisfied
when only the MD methods are used (cf. section 3.2) and then we
present the MCMD model composed with both the MD process and
an “MDI correctness” the Midpoint Displacement Bottom-Up pro-
cess (MDBU). Finally, applications and results are presented and
future works are discussed.

2 Background

In [Belhadj and Audibert 2005b] the authors propose an approach
in two steps to generate, from scratch, realistic-looking terrain mod-
els. First, randomly generated ridge lines deform the initial mesh
in order to obtain smooth ridges. Then, a simplified physically-
based model is used to simulate the construction of the correspond-
ing river network. In the second step, only the ridge lines and the
river network will be kept in a DEM called skeleton-DEM. This
DEM is used as an input to a fractal-based method that will final-
ize the generation process: the MDI algorithm add elevations to the
map in order to prepare the interpolation and send the result to the
according midpoint displacement method.

The method proposed in [Belhadj and Audibert 2005b] suffers from
some main drawbacks. The most significant one refers to the inter-
polation function: we can not get any control over the interpolation
even if it is in the top-down (MD) or in the bottom-up (MDI) pro-
cess; thus specifying curvature constraints on the surface is impos-
sible. This drawback does not affect the terrain generation when
ridge lines and rivers networks are precomputed because the inter-
polation is naturally done between the ridges (high elevations) and
the rivers (low elevations). But, for example, when we have either
high or low elevation constraints the resulting surface remains flat.
Figure 1 shows the result obtained using this previous method; here

Figure 1: Old approach drawbacks: reconstruction of Mount
Washington USGS DEM after the downsampling of the original
dataset to 3.3%.

the given initial constraint map is a downsampled dataset of Mount
Washington USGS (United States Geological Survey) DEM where
the downsampling factor is 30. The local constraints (here 3.3%
of the entire DEM) are satisfied but the generated surface does not
anymore look like the original one (cf. figure 9-(a)). This is due to
an incorrect computing of the interpolation in the MDI algorithm
and also due to total impossibility of describing the shape of the
interpolation curve. Thus we introduce in each process (MD and
MDBU) completely configurable interpolation functions that give
us the ability to tune the global aspect of the final shape.

The other drawbacks concern the MDI algorithm. In practice, the
recursion tree that describes the top-down process does not need to
be stored. Thus, in this paper, in the MDBU algorithm we save hun-
dreds of MB (≈ 200MB for a one million point DEM) by just using
a function that simulates the MD process in order to get the ascen-
dant list for a given child. On the other hand, in the MDI process,
the children elevations are not well weighted in the computing of
their ascendant elevation(s) (jerked modifications). Now these as-
cendant children are all stored in a hashtable before proceeding to
elevation computing. Finally, a better implementation and manag-
ing of the FIFO queue results in an improvement of the algorithm
performances.

3 Morphologically Constrained Midpoint Dis-

placement

Under very favorable conditions, we manage to fix some local con-
straints and force the general aspect of surfaces produced using a
midpoint displacement interpolation. In a classical top-down pro-
cess, children elevations depend on their ascendants ones. Thus,
if this condition is met then a smooth interpolation is guaranteed.
But this is not sufficient to obtain a control over the aspect of the
interpolation curve. Then, to respectively constraint the local and
the global aspect of the generated DEM : favorable conditions must
be reproduced by a preliminary process (here the MDBU process)
to obtain smooth interpolations and controls over the interpolation
computing are included in both MD and MDBU process to control
the general aspect of the obtained surface.

3.1 The Midpoint Displacement

We present our implementation of the midpoint displacement meth-
ods. Here we introduce changes in the interpolation computing in
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Figure 2: Midpoint Displacement interpolation under five local
constraints: the corner point elevations and the center point eleva-
tion are fixed. (a) / (b) triangle-edge resulting interpolation without
/ with noise; (c) / (d) diamond-square resulting interpolation with-
out / with noise.

order to constraint the global aspect of the final surface.

In a 1D space and for a given sub-interval, the midpoint elevation
is interpolated by the elevations of extreme points; a signed random
displacement δ is added to each interpolation in order to obtain a
Fractional Brownian Motion [Mandelbrot and Ness 1968]; this ran-
dom value is taken proportionally to the sub-interval size:

δ = (su_rand() + rt)× rs× 2−rnH
(1)

where su_rand is a uniform pseudo-random number generator in
[−1, 1], rt is used to translate su_rand interval, rs is a scale fac-
tor, r is the recursion level, n is the space dimension, and H , an
approximation of the Hurst’s parameter, controls the fractal dimen-
sion.

In a 2D space, interpolating the midpoint elevations differs ac-
cording to the used subdivision algorithm. We study variations
of the triangle-edge and the diamond-square subdivision methods
[Miller 1986]. A DEM is used to store values computed with
the MD method. We consider a DEM as a 2D array E[H][W ]
of cells. Each cell E[y][x] is given by the couple elevation
(E[y][x].e a two Byte integer value) and state (E[y][x].s ∈
{es_unknown, es_known}). We use cell states to avoid modifi-
cations on known, or already computed, elevations. Thus by inter-
polating an initial DEM where favorable conditions are present (see
figure 2-(a) and (c), here corner cells are set to a medium elevation
and the center cell is set to the maximum elevation) we obtain two
different results according to the chosen method. In figure 2-(c) and
(d), a fractal map is generated by adding a random deviation δ to
each interpolated elevation. Now, in order to get better control over
the final surface, we bring modifications on the average computa-
tion: we weight each ascendant elevation according to the distance
from the interpolated point (the child). Thus our implementation
allows adjustable nonlinear interpolation:

∆(e, d) = e× (1− σ(I)× (1− (1− d

dmax
)|I|))

σ(I) =

{

1 I ≥ 0
−1 I < 0

(2)

where ∆(e, d) gives the weighted elevation used in the average
computation according to e the elevation of the ascendant cell and
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Figure 4: The 1D-MD drawbacks appear when initial elevations
are given. The top diagram shows that the MD interpolation (here
without noise) produces a flat curve. The result is not better when
noise is added (the bottom diagram).

d the euclidean distance from the ascendant cell to the child cell.
Here dmax is the DEM diagonal and I is used to tune the interpo-
lation curve; depending on I we have: ∆(e, d) = e when I = 0,
otherwise ∆(e, d) respectively decreases or increases according to
the distance d when I > 0 or I < 0; it respectively follows a bell
curve, a line or a ridged curve when 0 < |I| < 1, |I| = 1 or
|I| > 1. Finally, a displacement d× δ (cf. equation (1)) is added to
each average computation in order to obtain a fractal surface. Fig-
ure 3 shows some surface behaviors according to each parameter
values. Note that when rs = 0, we produce an interpolated sur-
face without fractal noise; thus rt and H have no effects over the
obtained surface.

3.2 When do the MD methods produce smooth inter-

polations under local constraints ?

Figures 2 and 3 present various MD interpolations where the ele-
vations of corners and center cells have been constrained. In those
very particular cases, the interpolation process works well and does
not produce discontinuity artifacts. When ascendant cell elevations
are known before (or at the same time as) their children elevations,
the interpolation process does not produce discontinuities. Thus in
a 1D space, discontinuities can appear if elevations at the extremi-
ties of a sub-interval are unknown and if at the same time we know
the elevations of some cells inside this same sub-interval. An ex-
ample of such discontinuities is shown in figure 4; the top diagram
shows the result of an MD interpolation in an interval where initial
elevations are given. Figure 5 shows 2D example where some parts
of the result contain discontinuities and the others don’t. A centered
circle and four segments (on the map diagonals) are respectively
initialized to maximum and medium elevations; the bottom left seg-
ment is shifted of a unit to the left. Well interpolated elevations are
those who are on the sub-rectangle diagonals. Discontinuities are
clearly visible around the circle and the shifted segment.

3.3 The Midpoint Displacement Bottom-Up

Process

Figure 4 shows discontinuity problems when a cell elevation is
known while, at the same time, those of its ascendants are unknown.
We detect these situations by testing the cell states during a simu-
lation of the subdivision process. For these cells, we avoid dis-
continuities by running a bottom-up progression that computes the
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Figure 3: DEM variations obtained with our implementation of the triangle-edge method: (a) I = −0.4, H has no effect (ne), rt (ne),
rs = 0 (b) I = −0.4, H = 0.5, rt = 0, rs = 0.25 (c) I = −0.4, H = 0.5, rt = −1, rs = 0.25 (d) I = 0.4, H (ne), rt (ne), rs = 0 (e)
I = 0.4, H = 0.4, rt = 0, rs = 0.15 (f) I = 0.4, H = 0.4, rt = 1, rs = 0.15 (g) I = −2, H = 0.5, rt = −0.9, rs = 0.55 (h) I = 2,
H = 0.5, rt = −0.5, rs = 0.6

Figure 5: MD drawbacks: the DEM is initialized with cells
describing one circle and four segments; discontinuities appear
around the circle and the fourth segment. The left image shows the
DEM after a triangle-edge interpolation; white pixels depict the
lowest elevations while black pixels depict the highest ones. The
right image shows 3D view of the DEM where black material de-
picts the constraints.
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Figure 6: Application of the 1D-MCMD method on a prefilled
interval: the top curve is obtained without adding noise and the
bottom one by adding noise during the MD process.

ascendant elevations according to their children ones. Finally, the
top-down process (MD) finalize the interpolation. Figure 6 shows
resulting interpolations on a pre-filled initial interval after the 1D-
MCMD algorithm. The initial elevations are the same as those used
in figure 4. The top diagram shows an MCMD interpolation with-
out noise. On the bottom diagram, noise is added only during the
MD process.

In a 2D space, we start with an initial DEM where local con-
straints are given as elevations of known state cells, the DEM is pre-
processed with the MDBU method and the associated MD method
finalizes the interpolation. Note that MDBU depends on the cho-
sen subdivision method (MD). Indeed, the subdivision scheme is
used to obtain an ascendant list for a given child cell. Then we can
store unknown-state ascendants in a hashtable and have an access
to the list of their known-state children. Thus, the elevation of an
ascendant cell (with an unknown state) can be computed according
to those of all its children (with a known state). Figure 7 shows
the process of a triangle-edge-MDBU on a 5 × 5 DEM where two
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Figure 7: Interpolation process of a triangle-edge-MDBU on a
5 × 5 DEM. For each step, “Active Elevations” are used to in-
terpolate their ascendants (“unknown”→ “processed”); then for
the next step, “Active Elevations” become “Idle Elevations” and
“Processed Elevations” become “Active Elevations”. The process
is stopped when there is no more “Active Elevations”.

initial constraints are given (“Active Elevation” on the left scheme).
After the MDBU process we get ten initial constraints instead of
two; the new constraints help the MD process to produce a smooth
interpolation. Finally, in order to control the interpolation curve of
the bottom-up process, we define ∆BU (same as ∆ in equation (2)
but uses its own I constant called IBU ), an interpolation function
as:

∆BU (e, d) = e× (1− σ(Ibu)× (1− (1− d

dmax
)|Ibu|)) (3)

where e is an elevation, d an euclidean distance, Ibu tunes the inter-
polation curve and σ is the same as the one defined in equation (2).
Thus, the algorithm 1 gives the MDBU method details.

Put all initial cells in a FIFO Queue FQ;
while not_empty(FQ) do

while E← get(FQ) do
for all A ascendant of E do

if A.s = es_unknown then
add, if does not exist, A in hashtable T;
add E in T[A]: list of known child of A;

end if
end for

end while
for all cells A in T do

e← n← 0;
for all C known child of A in T[A]; do

e← e + ∆BU (C.e, euclidean_distance(A, C));
n← n + 1;

end for
A.e← e

n
;

A.s← es_known;
Remove A (and its known children) from T;
Put A in FQ;

end for
end while

Algorithm 1: The MDBU algorithm.

Figure 8 shows that the MCMD method suppresses the defects
appearing in figure 5: (a) shows the preliminary result after the
MDBU algorithm; (b)/(c) shows the (DEM)/(3D view) after the en-
tire interpolation process and (d) shows an interpolation process
where fractal noise is added.
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Figure 10: Interpolating downsampled data of Mount Washington
USGS DEM: MCMD time consuming and RMSE are given for each
downsampling rate (from 99% to 1%).

4 Applications & Results

The algorithm main application is to reconstruct downsampled
DEMs or fill no-data holes in DEMs like the SRTM DEMs [SRTM
2005]. In [Pouderoux et al. 2004] the authors downsampled an
USGS DEM of Mount Washington to 3.3% and use their algorithm
to interpolate the downsampled dataset. New DEM is generated
and compared to the original one using a Root Mean Square Error
(RMSE) computation. Here we choose to make the same test in
order to evaluate our method efficiency. Starting with a 1050625
elevation dataset of Mount Washington DEM (each elevation is
given in two bytes, the terrain unit is equal to 0.019836 meters and
we have 58405 different samples), we downsample randomly it to
35721 elevations (3.3% of the original one) and then reconstruct the
dataset using the MCMD method. Figure 9-(a) shows a 3D view of
the original Mount Washington DEM and figure 9-(b) shows a 3D
view of the reconstructed DEM using our MCMD algorithm. As
in [Pouderoux et al. 2004], the reconstructed dataset and the origi-
nal one are compared using an RMSE computation. We obtain an
RMSE that is about 5.8 meters against 5.04 meters in [Pouderoux
et al. 2004]. The reconstruction time using our method is about
2.97 seconds (MDBU: 2.73s + MD: 0.24s)1. The approximation
we obtain is as good as the one in [Pouderoux et al. 2004] and our
algorithm is more than 150 times faster (2.97s against 531s). The
curves, figure 10, confirm these good results for any downsampling
rate. From a complexity viewpoint, as the MD process does not
depend on local constraints (its complexity is O(Nlog4N) where
N = W × H) this means that the time consuming variation on
figure 10 depends only on the bottom-up process. Actually, MDBU
becomes time consuming when initial constraints are in deep part of
the subdivision process tree. Thus, one worst case can be obtained
when all the tree leaves are known and all other tree nodes not (odd
index data when W = 2n + 1 and H = 2m + 1); here the com-
plexity is about O(C(log4N)2) where C ≈ N

4
is the constraint

number.

Please view the movie that illustrates the reconstruction process of
the Mount Washington DEM. The movie is mpeg4-encoded and is
available at:
http://www.ai.univ-paris8.fr/˜amsi/papers/afrigraph07/

Figures 9-(c), (d), and (e) show a second interesting result in DEM
reconstruction. (c) shows the SRTM DEM N36E008.hgt ob-

1All our computational times have been clocked on a Pentium IV 4Ghz

with 1GB of memory
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Figure 8: Steps and some variations of the MCMD method: (a) The DEM after the MDBU algorithm: cells are added around the initial
circle and segments; (b) The DEM after a triangle-edge-MCMD interpolation: (Ibu = 6, I = 1); (c) 3D view of (b); (d) 3D view of a
triangle-edge-MCMD interpolation with noise: (Ibu = 5, I = −0.7, H = 0.4, rt = −1, rs = 0.2).

(a) (b)

(c) (d) (e)

Figure 9: Reconstructing / Filling no-data holes of satellite DEMs. (a) Shows a 3D view of the original Mount Washington USGS DEM.
This DEM is randomly downsampled to 35721 elevations (3.3% of the original DEM). Then the MCMD method is used to interpolate the
downsampled data in order to obtain (b) in 2.97 seconds and with an RMSE = 5.8 meters. (c), (d) and (e) : Reconstructing / Filling no-data
holes of an SRTM DEM: (c) The original SRTM DEM; (d) More than 90% of data from (c) are deleted using a Sobel edge detection; (e)
Rebuilding the SRTM DEM by applying the MCMD method on (d). Note that no-data hole from (a) is filled in (c).



tained from the Shuttle Radar Topography Mission database (cf.
[SRTM 2005]). In (d), more than 90% of data from (c) are deleted,
we use a silhouette detection in order to keep a minimum of infor-
mation. And then in (e), the MCMD method is used to fill the “lost”
data. We can see that there is a striking resemblance between (c)
and the result of the rebuilding of (c) starting from (d). This resem-
blance, is also confirmed by an RMSE computation between the
two DEMs where we obtain less than 8 meters. Moreover, due to
data capture errors, the SRTM data contains no-data holes within,
we can see a white little splash on the middle bottom of (c) which
disappeared on (e).

Another main application for our algorithm is to help the user to
easily generate realistic-looking landscape models. Initial con-
straints can be given through a DEM editor, an image editor or
can be automatically generated. For example, we can use skeleton-
DEMs presented in [Belhadj and Audibert 2005b]. To have a ridged
behavior behind ridge line and bumped behavior behind rivers, we
bring up some modifications to the MDBU process in order to
differentiate “ridge cells” (es_ridge) and “river cells” (es_river)
from the other “known cells” (es_known). Thus, each cell with
a specific state (here es_ridge or es_river) can produce a spe-
cific behavior around it. This can be done by giving different I and
Ibu parameters for those specific states. The left image of figure 11
shows a realistic rendering of an eroded terrain model generated us-
ing this approach. We can notice that the entire model is generated
from scratch. The right image of figure 11 shows another model
produced from scratch; here a Bracketed L-System2 [Prusinkiewicz
and Lindenmayer 1990] path is used as an initial constraint map.
Other models generated around the user sketches are shown in fig-
ure 12. Here, to obtain the initial constraints, Africa silhouette and
the text “Afrigraph ’07” are added in a grayscale image under an
image editor. The image is loaded as an initial DEM where white
pixels are considered as unknown-state cells. We obtain 12-(a) and
12-(b) by using the MCMD method with different parameters.

Finally, our method can also be used in material modeling. We
show an example in figure 13. Here, we use an image editor as
in the previous application example. A grayscale image is filled
with 1% of white noise. The Afrigraph logo, Africa silhouette and
the text “Afrigraph ’07” are added. Then this “Salt and Pepper
Noised” image (cf. figure 13-(a)) is loaded as initial constraints
of the MCMD method that produces (cf. figure 13-(b)) a realistic
rough-coat wall painting model [Deguy and Benassi 2001a]. Note
that, for this application example, we use two passes of a 5 × 5
median filter on the MCMD model in order to reduce the fractal
noise.

5 Conclusion

This paper has presented an efficient fractal-based algorithm for ter-
rain surface reconstruction. The method can be used to supersample
DEMs, complete partial datasets of elevations, fill no-data holes in
DEMs or produce realistic-looking models from scratch or by us-
ing a user sketch as initial constraints. The algorithm is efficient
enough to model high resolution maps in a very short time which
gives the end user the ability to work his model interactively. The
topics for future work aimed at reducing the RMSE in the interpo-
lation of downsampled DEMs in order to use our method in data
compression. We are also planning to improve the method results
when a contour lines are used in DEM reconstruction. Actually, we

2Here is the description of the L-System:

θ0 ←
π

2

θ ←
π

25

ω ← +++++++++++++X

X ← F[@.5+++++++++X] -F[@.4 - - - - - - - - - - -!X]@.6X

only have one behavior around a fixed elevation (a local constraint).
With contour lines two behaviors are necessary in order to interpo-
late upper neighbors (one side of the contour line) and lower ones
(the other side).
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Figure 11: Realistic renderings of models generated from scratch (quarter million point models). The model rendered in (a) was generated
in 0.61 seconds (0.5s to generate the skeleton of the ridge and rivers network and 0.11s to produce the surface using our MCMD method);
the used parameters are: I = 1.0, IBU = 6.0, H = 0.49, rt = 0.0, rs = 0.5. The model rendered in (b) was generated in 0.12 seconds; the
used parameters are: I = 1.1, IBU = 10.0, H = 0.48, rt = 0.0, rs = 0.5.
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Figure 12: Realistic renderings of models (a million point) generated using a user sketch as local constraints. The model rendered in (a)
was generated in 0.25 seconds; the used parameters are: I = −1.1, IBU = −20.0, H = 0.45, rt = −0.2, rs = 1.0. The model rendered
in (b) was also generated in 0.25 seconds (here we use the same local constraints); the used parameters are: I = 1.1, IBU = 4.0, H =
0.45, rt = 0.0, rs = 1.1.
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Figure 13: Application of the MCMD method in material modeling. Here a rough-coat wall painting effect is reproduced. This million
point model was generated in 3.66 seconds (0.34s for the MCMD method and 3.32s for the median filter) ; the used parameters are:
I = 3.0, IBU = 7.5, H = 0.5, rt = 0.1, rs = 1.3.


