
Modeling Landscapes with Ridges and Rivers

Belhadj Farès
A.I. Laboratory

Paris 8 University
2 rue de la Liberté

93526 Saint-Denis Cedex, France

amsi@ai.univ-paris8.fr

Audibert Pierre
A.I. Laboratory

Paris 8 University
2 rue de la Liberté

93526 Saint-Denis Cedex, France

audibert@ai.univ-paris8.fr

ABSTRACT
Generating realistic models of landscapes with drainage net-
work is a major field in computer graphics. In this paper,
we present a fractal based method which generates natural
terrains using ridges and rivers information. As opposed
to methods that compute water erosion for a given terrain
model, our terrain mesh is generated constrained by a prede-
fined set of ridge lines and rivers network. A new extension
of the midpoint displacement model is used in this context.
The resulting landscapes meshes lead to realistic rendering
and our method seems to be very promising.

Categories and Subject Descriptors
I.3.3 [Computer Graphics]: Picture/Image Generation;
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling—Physically based modeling — Curve, sur-
face, solid, and object representations; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism—Frac-
tals

General Terms
Algorithms

Keywords
terrain models, terrain erosion, fractals, midpoint displace-
ment.

1. INTRODUCTION
Modeling realistic approximations of natural landscapes is
a long standing problem in computer graphics. Well known
interpolation methods [3, 5] are enough powerful for gener-
ating plausible models of non-eroded mountains. In 1988,
Kelley et al. [4] overcame this limitation by generating a wa-
ter drainage network to modify the initial terrain surface.
Alternative methods based on the simulation of hydraulic
and thermal erosion were proposed by Musgrave et al. [6,
2] and extended — using layered structures — by Nagshima
[7]. In general, these last methods process an initial terrain

in order to produce an eroded terrain model. However, de-
spite simplifications, these methods still remain too strict,
complex to manipulate and time consuming.

In A Fractal Model of Mountains with Rivers Prusinkiewicz
and Hammel [8] described a novel approach that models —
in a single integrated process — a landscape with a river us-
ing context-sensitive rewriting mechanisms. This approach
still remains original and promising but suffers from either
artifacts or the generation of only one river.

In this paper we introduce a bi-process method that models
realistic landscapes with ridge lines and drainage network.
Our algorithm generates a terrain model around a precom-
puted set of ridge lines and rivers network. First, a simple
and rapid method that generates the ridges and rivers net-
work is used. Then, we describe an extension of the basic
midpoint displacement method that allows generating frac-
tal terrain model around a pre-filled ridges and rivers net-
work. This extension provides good interpolations without
either artifacts or discontinuities.

2. MODELING RIDGES AND RIVERS
The first part of our modeling process focuses on the prob-
lem of generating an initial Digital Elevation Map — D.E.M.
— that represents the ridges and rivers network. We de-
scribe in this section one simple way of obtaining this set of
ridge lines and the associated drainage network.

2.1 Ridge Lines
Starting with an empty Digital Elevation Map, couples of
Ridge Particles are randomly dispatched on the map. These
Ridge Particles are mobile points with map coordinates, an
altitude and an orientation. Within one couple, particles
have the same initial position P0 with relatively high alti-
tude y0 and opposite initial orientation angles. For a given
step δ and at each iteration i, particles are subject to side
impacts in way to describe a fractional Brownian motion
(fBm) [3] on the xz plane. The particle’s altitude decreases
according to the covered distance i× δ on a Gaussian distri-
bution G1 centered at the initial position and with a stan-
dard deviation σ = 1

4
× width(D.E.M.). Thus during the

particle displacement from Pi to Pi+1, we modify the map
altitudes according to the successive particle’s altitudes on
the [Pi, Pi+1] segment. For each point p on this segment, we
draw a Gaussian curve G2(p, σ

′ = 1

4
× σ) perpendicular to

[Pi, Pi+1] and with an amplitude equal to altitude(p) (see
Fig.1).



The Particle motion is stopped when its altitude became
null or when it collides with an other particle’s route.

Finally, by modifying the initial number of Ridge Particles,
G1, G2, and the fBm parameters we can obtain different
kinds of ridged terrains.

δ
σ 0P

1P

1P

’

’

Figure 1: The route of a Ridge Particle couple
(ri, ri+1) modifies the terrain mesh according to two
Gaussian functions. At the initialization, ri starts
at P0 and moves toward P1, ri+1 takes the opposite
direction from P0 and moves toward P ′

1.

2.2 Rivers Network
After the deformation of the Digital Elevation Map with
the ridge lines, a similar method is used to draw the rivers
network. Now we consider River Particles, they are mobile
balls with a mass m subject to a gravity acceleration — m

serves in weighting the river’s width and its deepness. River
Particles are randomly dispatched at the top of the ridge
lines. A simple physically based method is used to model
this particles motion (in the manner of “obtaining velocity
field of water flow” in [1]); here the negative y axis accelera-
tion is more weighted and a friction power is added — thus
intersections between the river’s route and ridge lines are
suppressed. When a particle ri intersects an other particle’s
route path(rj), ri is stopped and path(rj) is backtracked
until the intersection point. rj properties are modified such

as1 :

position(rj) = position(ri)
−−−−−−−−→
velocity(rj) =

−−−−−−−−→
velocity(rj) +

−−−−−−−−→
velocity(ri)

mass(rj) = mass(rj) +mass(ri)

The process is stopped when all the particles either become
static or exit from the terrain’s limits. In the next process,
we only consider particles that exit from the terrain’s limits
(see Fig.2).

3. MIDPOINT-DISPLACEMENT
At this point, a plausible ridges and rivers network is gen-
erated and stored on the map; the ridges on Fig.2 were

1At the intersection point, the particle ri become a source
for the river’s path described by rj .

Figure 2: A basic ridges and rivers network. Ridge
lines are blended in order to compute the corre-
sponding rivers network.

Figure 3: The skeleton of the ridges and rivers net-
work.

blended using a Gaussian distribution to allow us to com-
pute the rivers network. For the second part of the terrain
generation process, we just keep the skeleton of this network
and reinitialize all other points of the map (see Fig.3).

The skeleton of the ridges and rivers network is stored in
the Digital Elevation Map. We define four possible states
for each map coordinate:

• NULL : the coordinate is not yet computed;

• RIDGE : the coordinate is on a Ridge Particle’s path,
its value is equal to the ridge altitude at that position;

• RIV ER : the coordinate is on a River Particle’s path,
its value is equal to the ridge altitude at that position;

• DONE : the coordinate is computed.

Thus, a Digital Elevation Map containing NULL, RIDGE

and RIV ER states is obtained. We aim to get only the



coordinates with a NULL state computed2.

3.1 The Reverse Midpoint Displacement
Many midpoint displacement methods [5] can be useful to
fill the remaining NULL state coordinates but the resulting
terrain will either contains artifacts and discontinuities (ex.:
The Triangle-Edge Subdivision, The Diamond-Square Subdi-
vision) or modifies the already computed coordinates (ex.:
The Square-Square Subdivision). By pre-filling a part of the
remaining NULL state coordinates we find that these two
first methods, The Triangle-Edge and The Diamond-Square
give better interpolation results.

We choose one of Triangle-Edge or Diamond-Square sub-
division methods and use it, as described in [5], with our
midpoint displacement function md fct(square t square).
This function recursively interpolates all NULL state coor-
dinates in the square square; it uses the chosen subdivision
method.

The Reverse Midpoint Displacement processes the Digital
Elevation Map array3 (DEM[N][N]) with a scan-line order
and a step s varying from 1 to 2n with N = 2n + 1; so s

takes at least n + 1 different values. For each s, the map
is considered as the minimal covering set of s-side squares.
For each set of s-side squares, a partial interpolating mesh
is computed in two steps:

• If one (respectively two or three) corner of each s-side
square has a non-NULL state, then the other three
(respectively two or one) corners are computed by in-
terpolating first mentioned corner’s altitude;

• If one corner of each s-side square has a non-NULL

state4, the the md fct is called for this square.

Figure 4 and 5 show respectively the stage 4 (s = 23 and N

= 513) and the last stage (s = 29) of the Reverse Midpoint
Displacement process.

We declare C DEM[N][N] as a new empty Digital Elevation
Map, ur() a uniform random number generator function in
the [−1, 1] interval and rmd fct(integer s) as our Reverse
Midpoint Displacement function. Here is the body of this
function:

1. copy DEM[N][N] in C DEM[N][N];

2. for i ← 0 to N - 1 step s;

(a) for j ← 0 to N - 1 step s;

i. square ← the square with top-left corner on
(i, j) and side equal to s;

ii. nn s← for each corner of square in DEM: get
the number of non-NULL coordinates;

2compute a coordinate remains on interpolating its map’s
elevation, so its new state is DONE.
3We simplify by setting N = width(DEM) =
height(DEM).
4If a s-side square has one non-NULL state corner, then
the other three corners have implicitly a non-NULL state.

iii. if nn s > 0 then;

• a ← for each corner of square in DEM:
the altitude average of all non-NULL co-
ordinates;

• for each corner (l, m) of square with a
NULL coordinate:

– altitude(C DEM[l][m])← a + s * ur();

– state(C DEM[l][m]) ← DONE;

3. copy C DEM[N][N] in DEM[N][N];

4. if s = 1 then goto 6;

5. for i ← 0 to N - 1 step s;

(a) for j ← 0 to N - 1 step s;

i. square ← the square with top-left corner on
(i, j) and side equal to s;

ii. nn s← for each corner of square in DEM: get
the number of non-NULL coordinates;

iii. if nn s = 4 then md fct(square);

6. s ← 2 * s;

7. if s < N then rmd fct(s)

The function rmd fct(1) is used to process the Digital El-
evation Map shown on figure 3. The resulting landscape is
shown on figure 6.

Figure 4: Stage 4 of 10 of the Reverse Midpoint
Displacement process (s ← 2i, i ∈ {0, 1, 2, 3}). Points
either in blue or in pink are already computed. The
green points still remain to compute.

4. CONCLUSIONS
This paper has presented a novel technique for automatic
modeling of landscapes with ridges and rivers. We have
demonstrated an extension of the basic midpoint displace-
ment algorithm that allows generating realistic terrains con-
strained by a predefined ridges and rivers network. Thus,
this technique is efficient enough to model high resolution
landscapes in reasonable time. Computing the model shown
on figure 5 took 0.45 seconds on a personal computer (Intel



Figure 6: A fractal landscape with ridge lines and rivers network.

Figure 5: Final result (stage 10 of 10) of the Reverse
Midpoint Displacement process (s← 2i, i ∈ {0, ..., 9}).

Pentium IV / 3Ghz / 512Mo) — 0.25 seconds to compute
the ridges and rivers network and 0.20 seconds to compute
the Reverse Midpoint Displacement.

Future works are aimed toword two main goals:

• Creating a toolbox in order to design ridge lines, val-
leys and actually the corresponding rivers network.
Thus, the user can interactively model and generate
his own landscape;

• Reproducing real landscapes by either retrieving or de-
tecting ridge lines and rivers network on satellite data.
By using controllable noise generators, our extension
could actually serve in data compression.

5. REFERENCES

[1] N. Chiba, K. Muraoka, and K. Fujita. An erosion
model based on velocity fields for the visual simulation
of mountain scenery. The Journal of Visualization and
Computer Animation, 9(4):185–194, 1998.

[2] D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin,
and S. Worley. Texturing & Modeling: A Procedural
Approach, chapter 20 – MOJOWORLD: Building
Procedural Planets, pages 565–615. Morgan Kaufmann,
2003.

[3] A. Fournier, D. Fussell, and L. Carpenter. Computer
rendering of stochastic models. In Commun. ACM,
volume 25, pages 371–384, New York, NY, USA, 1982.
ACM Press.

[4] A. D. Kelley, M. C. Malin, and G. M. Nielson. Terrain
simulation using a model of stream erosion. In
SIGGRAPH ’88: Proceedings of the 15th annual
conference on Computer graphics and interactive
techniques, pages 263–268, New York, NY, USA, 1988.
ACM Press.

[5] G. S. P. Miller. The definition and rendering of terrain
maps. In SIGGRAPH ’86: Proceedings of the 13th
annual conference on Computer graphics and
interactive techniques, pages 39–48, New York, NY,
USA, 1986. ACM Press.

[6] F. K. Musgrave, C. E. Kolb, and R. S. Mace. The
synthesis and rendering of eroded fractal terrains. In
Computer Graphics, volume 23, pages 41–50, 1989.

[7] K. Nagashima. Computer generation of eroded valley
and mountain terrains. The Visual Computer,
13(9–10):456–464, 1998.

[8] P. Prusinkiewicz and M. Hammel. A fractal model of
mountains with rivers. In Proceedings of Graphics
Interface ’93, pages 174–180, 1993.


