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Fig. 1: Stylization: from basically shaded scene rendering (a) to semantic-expressive rendering (d, e) through semantization
process (b, c).

Abstract—This paper presents a first attempt toward a generic
process for stylization. Guided by the scene content and con-
strained by the artistic or functional expectations of the end-
user, our model produces, in real time, an expressive rendering
of the scene based on the user settings. Our work is based on
semantic description of shapes that allows logical inference on
the scene content, performed via the description logic formalism.
This inference yields semantic data that can guide the graphical
restitution of the scene. This approach is illustrated by a practical
application example that successfully stylizes a 3D scene in real
time and for a predetermined style. The resulting stylization,
even if style is selected in advance, automatically and successfully
highlights different parts of the scene according to semantic
data extracted for each object. The stylization results are then
discussed before we conclude and present our future works.

I. INTRODUCTION

Up to now, the stylization problem has been addressed in a
siloed approach. Almost all research works in artistic rendering
field aims for the production of a specific style which is
often efficient but non reusable outside of its specific scope.
It should be noted that it is a common way to break down
a problem into more specific subordinate aspects to propose
partial solutions and work around a fundamental question. As
an example, Kyprianidis has proposed a state of the art on
stylization techniques and lists about thirty different families
of expressive rendering processes for the sole image based
artistic rendering type (IB-AR) [1]. The vast majority of those
techniques tend to replicate a very specific visual style, e.g.
oil painting, hatching or watercolor rendering. After more than
thirty years of active research, the expressive rendering field
yields a wide range of works that explains how to produce

a graphic style while the fundamental questions of what a
visual style actually is and how it relates to the content is
never addressed.
Furthermore, as a general functional aspect of stylization, it
is important for us to gain control over the information that
will trigger the generation of a given style. If they were such a
consistent generic model of visual style on which NPR works
could lean on, this would move out the global research effort
of siloed approaches and bring new opportunities in addressing
today’s artistic rendering challenges. Indeed, profound ques-
tions like ’What beauty is ?’ or ’Is this quality work?’ can
not be answered without generic models that transcend all
technical solutions and shift the problem from how to generate
a graphical style to what is stylization, intrinsically.
Example Based Rendering (EBR) techniques, along with other
global processing such as image filtering, can reproduce a wide
variety of artistic depiction without any useful information on
the style itself. We are still blind regarding its specificities and
intrinsic properties.
Until we are able to define and manipulate structure and data
that relate to style concepts - independently of any image
content - we can not separate the content from its representa-
tion, making it difficult, if not impossible, to manipulate the
countless visual styles in a unified manner.
The main contribution of this paper is to introduce an approach
to stylization that goes beyond functional categories, e.g.,
physical simulation, algorithmic or statistic representation,
in order to propose a consistent generic model for visual
styles description. After discussing some expressive rendering
techniques related to our work, we present the fundamental



ideas that underpin our work, detail our approach and how
the resulting model provides new elements to move toward a
formal, generic structuring of visual styles. Then we provide
an example of 3D stylization, among many other practical ap-
plications that could be based on our model, before discussing
the approach. Finally, we conclude and provide prospects of
this work.

II. STATE OF THE ART

In this section, we present related work on expressive
rendering and the quest for graphical style definition. As
mentioned in the introduction none of these works defines
what style actually is. This kind of question is never ad-
dressed in research works reproducing visual style since the
challenge is to compare computed image synthesis and artistic
production. Only states of the art on expressive rendering
approach this issue since they propose a taxonomy of related
work. Therefore, considering the classification presented in the
taxonomy, we extract concepts of graphical style definition.
Kyprianidis [1] recently surveyed image-based artistic render-
ing techniques (IB-AR) since the 80’s. According to Kypri-
anidis taxonomy, IB-AR techniques applied to video or still
images are divided into 4 main families: stroke-based ren-
dering, region-based rendering, example-based rendering and
image processing and filtering.
From early works on brush stroke simulation [2] to recent
image parsing in order to extract semantic data on graphical
contents [3], stroke-based rendering techniques have achieved
remarkable results. These techniques succeed in reproducing
many painting [3] [4], drawing [5] [6] or mosaicing aesthetics
with great visual richness and natural feeling like in Orchard
et al. [7] or Hurtut and al. works [8].
Region based techniques are commonly used as segmentation
tools in expressive processes. Nonetheless, some works yield
very interesting results based on region oriented processing
like in the work of Wang et al. for toon shading [9], in
graphical restitution of textile (felt) as in Donavan et al.’s
work [10] or black and white image depiction with the work of
Xu [11]. Image processing and filtering yields few interesting
results as a stylization tool. This is due to the fact that
these filters are mainly used for restoration and enhancement
of photorealistic images. They are globally divided into two
categories: spatial and gradient based. Most techniques are
applied in the spatial domain while a sparse research effort
is made in the gradient one. However, the latter may produce
very interesting results like in Bhat and al.’s work [12] where
their abstraction result gives better results compared to Ozran
et al.’s [13] and Winnemöller and al.’s ones [14].
The last family of Kyprianidis taxonomy is the example based
one. Since Hertzmann’s work on image analogies [15], EBR
pioneered a novel approach to style generation by not trying
to reproduce a specific style, but rather learning an analogous
transformation from a training image pair (a source image
and an artistic representation of it). This transformation is
then applied to any new image by the mean of the ad-hoc
mathematical operation. Some interesting recent works not

only transfer colors but also brush strokes from a dictionary
of templates to literally paint by analogy [16].

None of these works propose a style definition, yet they
share at least a core concept: to generate a style, additional
information is necessary. This information is included in the
scene, e.g., an image, a video, a 3D scene and most of research
works extract it either automatically, semi-automatically or
manually. Thus, in order to provide this higher-order informa-
tion for stylization purpose, we propose a semantic description
of shapes. This semantic layer allows for a logical inference
of the scene which makes possible a semantic tagging of its
content. The latter can be used to guide a graphical restitution
of the scene.

III. OUR MODEL: A SEMANTIC SHAPE GENERATION

Our model aims at addressing the question of style itself,
not the production or reproduction of a particular style. To
achieve this, we seek to characterize all elements present
in a scene. A graphical restitution of those characteristics
would allow to produce an image. Our model should make it
possible to choose different graphical restitutions for a specific
characteristic, potentially yielding different graphical styles.
We choose the form as the core element on which applying a
graphical style.
In order to be able to manipulate the concept of a form -
before its representation by a given style - we semantically
define it using a reduced set of geometrical concepts and
a corresponding set of volumetric primitives associated with
them. In our approach an object is described by its ontological
properties - in the sense of the irreducible being criteria.
For example, our mental representation of a car is associated
with the concepts of wheels and passenger’s compartment,
which reflects the reality that cars always have wheels and a
passenger’s compartment. The number of wheels may vary,
as for the size of the compartment but every single car
shares those two ontological properties. Hence, representing
a three dimensional car with the help of some torus, disks
or cylinders (the wheels) and a cubical volume (the passenger
compartment) along with its average spatial dimensions would
be enough to describe and identify a class of objects we
name cars. Building such semantic knowledge about forms
provides a way to describe and identify them regardless of
their graphical representation.

This approach is inspired by the way our visual cortex
processes external visual inputs. From core electrical visual
inputs, dedicated groups of neurons identify basic shapes
that are gradually aggregated into a form we recognize and
eventually name with the help of our memory. These basic
shapes, e.g., dots, line, angles, act as descriptors (among
others) with which our brain tries to match the closest known
object. Elementary forms and other data such as color, position
or light intensity constitute together a set of descriptors. The
aggregation of descriptors leads to the identification of new
descriptors (at higher semantic level) such as the object topol-
ogy. Similarly, in our work, taken together, these descriptors
allow for object recognition by matching them to a database



of semantic description of objects and provide the scene with
a first level of semantization. For obvious reason related to the
size of the database, the latter knowledge base of objects can
be created/updated by the final user depending on his needs
regarding the type of content to be analyzed. From there, an
inference can be performed on this semantic base and enrich
our scene knowledge. By defining basic shapes and associated
semantics, the scene characteristics are define and a graphical
restitution can be applied. Therefore, this generic model can be
applied by defining the shapes, the semantics and the graphical
restitutions associated with them.
The binding between actual shapes and their formal semantic
representation can be achieved by an axiomatization process
based on description logic (DL), as introduced by Krötzsch
et al. [17]. The main advantage of this approach is that
description logic can be inferred in a decidable way when
expressed with restricted predicate logic, assuring the sound
and complete logical inference. With this formalism, it be-
comes possible to compute formal logical relations on high
level conceptual elements such as shape, color or orientation.
This kind of formalism has been used by Ben Hmida et al. [18]
in the form of SWRL language to identify specific objects from
a 3D scan.
Our approach proposes a taxonomy of volumetric primitives
and a set of logical relations. Together, they constitute a
blueprint for object definition and inference. Depending on
user needs, objects classes and properties are defined, as
well as higher semantic classes that rely on the previous
ones, i.e., primitives shapes define object classes which can
be used to define higher semantic entities. As an example,
depending on their density in the scene, cars and houses
classes (defined by volumetric primitives) may define a city
(a higher-order entity defined by classes). Hence, by defining
dedicated classes and properties based on the taxonomy and
the associated formalism we provide, the user can build (or
update) a semantic representation of objects associated with
a domain, e.g., architecture, weaponry, scenery, and use it
to infer scene characterization, as shown on the left side of
figure2. Then, following the process of inference, semantic
data are available and can be used to enrich the initial scene
and guide its stylization for expressive rendering purpose, as
shown in the right side of figure 2 and detailed in figure 3.
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Fig. 2: Main steps of scene enrichment by axiomatization
process.

IV. APPLICATION EXAMPLE: SEMANTIC-BASED
RENDERING

As an illustration of our purpose, we propose an example
with a 3D scene that contains natural and industrial elements
(trees, houses and a factory). Our model is used to semantically
define this set of objects. This semantic definition then allows
for the automatic inference of their nature (a tree, a house).
Based on the result of this inference, two types of semantic
properties are associated: an object can be Pollutant or Puri-
fying and exudes an atmosphere that ranges from Reassuring
to Creepy. Eventually, these semantic properties are used to
guide the graphical restitution of the scene. As shown in
figure 3, an abstracted version of the original scene is built.
This abstraction layer could be built upon Yumer and al. work
[19] and Mehra and al. [20] results. In the present case, in
order to focus on the semantic part of the proposed approach,
abstracted parts of objects are tagged semi-automatically with
their volumetric primitive types, e.g., plane, solidCubical or
solidSpherical. This scene is then automatically axiomatized
as described in section IV-A. The resulting inference allows
to potentially identify an object as being the ground, a tree,
a house or a factory. Based on this semantic data, two types
of parameters are set for each object that has been identified:
its pollution factor and the atmosphere it provides. The level
of pollution ranges from Purifying (which suits well for a
tree) to Pollutant (which is the case for a factory). The
atmosphere ranges from Reassuring to Creepy. Both pollution
and atmosphere parameters act as inputs to guide the graphical
restitution in real time by adding smog and adapting the
lighting of the scene, respectively.
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Fig. 3: Pipeline overview. From a 3D scene file, objects
topologies are translated into an ontological representation. An
inference on the resulting knowledge base provides semantic
information such as object identification and scene tagging.
The latter being used in our case for stylization purpose.

A. Semantic shape description
In this example, the semantic knowledge associated with any

object in the scene is defined by three ontological properties:



• the number and type of its constitutive parts;
• its overall actual dimensions;
• its global orientation in space.

The axiomatization of the abstracted 3D scene is realized
in OWL-DL language (Ontology Web Language in its DL
form) which is a fully decidable version of OWL. It is a
SHOIN(D) description logic that provides datatypes (literals
that can take numerical values) useful in our case to set
and infer on actual size of objects. The constitutive parts of
3D objects, i.e., the volumetric primitives that constitute the
abstracted representation of an object, are taken from a subset
of geons as defined by Biedermann [21]. This choice is guided
by the fact that it is of no use to define new and dedicated
3D primitives in the context of our example scene. In OWL-
DL terminology, these volumetric primitives are defined as top
classes (ex. solidCubical), the overall dimensions of objects
are defined as datatypes (ex. hasMaxBoundingBoxValueOf)
and their global orientations in space are defined by two data
properties (isHorizontal and isVertical). The purpose of
this axiomatization is to build an ontology that semantically
describes the scene (left side of figure 3) in order to be
able to perform logical inferences that, hopefully, produce the
identification of objects present in it (right side of figure 3).
The resulting identification of objects is finally used to set
their Purifying/Polluting and Reassuring/Creepy parameters
that will guide the graphical restitution of the scene.
The ontology produced for this example is twofold: a tax-
onomy of volumetric primitives and classes that use this
taxonomy to logically define objects based on our three
ontological properties. For the purpose of this example we
define four classes of objects: ground, tree, house and factory.
These objects are defined by the use of the taxonomy and a
isComposedOf relation that reflect the relation of an object
to its constitutive parts. Furthermore, several properties for
the size and orientation in space of object are respectively
defined as a range of values in centimeters, and isVertical ,
isHorizontal and isEven as boolean values. As an exam-
ple, the abstracted representation of a common tree can be
defined by one cylinder for the trunk, and a rather spherical
or conical volume for the foliage. Its size may range from 2 to
25 meters if very tall trees like old sequoias are ignored. We
can formally describe this abstracted, semantic representation
of a common tree by the following OWL description:

isComposedOf only (SolidCylinder or

SolidSpherical or SolidConical)

and isComposedOf exactly 1 SolidCylinder and

hasBoundingBoxMaxValueOf

(some double[>= 200.0] and double[<=2500])

and isVertical=true.

Once the ontology with its taxonomy of volumetric primi-
tives and logical description of objects classes is generated, the
3D scene has to be translated in this OWL-DL formalism in
order to update the ontology with actual objects present in the
scene. In OWL-DL terminology, these 3D objects will become
individuals (instantiations of one of our four object classes

with actual values). In order to instantiate these individuals,
we first extract useful data from the 3D scene, translate it with
the OWL-DL formalism in our ontological representation of
objects, and finally update the ontology file with the resulting
OWL-DL logical transcription. Data extracted is:

• the ID of the object;
• the name of its parts;
• both local and global transformation matrices;
• the 3D points list of each of its parts.

From primitives’ names, 3D points lists and transformation
matrices, additional information is extracted or calculated:

• the number and types of volumetric primitives that con-
stitutes the object;

• for each primitive, its three spatial dimensions (height,
width, depth);

• the three spatial dimensions of the global bounding box;
• the global orientation of the bounding box (Vertical,
Horizontal or Even) .

With this data, a knowledge base that reflects the content of the
3D scene can be created. The instantiation of each individual is
two-steps: assert the topology of the object and set the values
of datatypes and data properties for its size and orientation.
The topology of objects, defined in this work by the type and
numbers (cardinality) of its primitive components, translates
into the following logical description: the intersection between
all values of the union of components and the isComposedOf
relations of cardinality n, for each component.

Following this axiomatization, the ontology is updated with
as many individuals as matching objects in the 3D scene. Once
the ontology is populated, a semantic reasoner that classifies
the individuals among the top classes is used (we choose the
Pellet reasoner for its performance). The resulting inference
yields a tagging of the individuals. This semantic data is
then used to enrich the original 3D scene. In this application
example, objects can be tagged as tree, ground, house and
factory. Based on the result of this tagging and the unique
ID of objects, the initial scene can be enriched with high
level semantics: for each object identified in the scene, a
value for the Polluting and Creepy factors is set. As shown
in figure 4, these values are encoded on two channels of a
material property associated with each 3D object. These two
Pollution and Creepy factors range from 0 to 1 and reflect for
each object the diffusion level of these two properties. Thus,
this semantic knowledge can generate a semantic map used to
stylize the 3D scene in real time. This stylization process is
described in detail in the next section.

B. Semantic-based rendering

Our rendering process needs the geometry of 3D objects,
normal vectors for lighting, objects materials, texture coordi-
nates, the textures and the raw semantic weightmap given as
a texture, as shown in figure 5(a) and (b). In this case, only
the red and green components are used to store two types
of semantic data that reflect the Polluting and Creepy factors
diffused by each object of the scene, as shown in figure 4.
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Fig. 4: Semantic data representation along two axis and
four different categories. The two channels used to describe
pollution (from purifying to pollutant) and atmosphere factors
(from reassuring to creepy) are represented with red and green
color, respectively.

Based on the tagging of objects, a specific color property in
objects’ materials is used to encode the level of pollution and
the type of atmosphere it exudes. As shown in figure 4, the
red component is used to set the level of pollution while the
green component sets the exuded atmosphere. Along those two
axis, four components can be set. Both opposite directions of
each axis (the Polluting and Creepy axis) are coded in two
intervals [0, 5[ and [0.5, 1] in order to fit the OpenGL/GLSL
texture components’ range of [0, 1]. Here the blue component
is used to denote the absence of any semantic information.
The resulting semantic map is shown in figure 5(b).

(a) (b)

Fig. 5: Raw scene (a) and semantic map generated from
the results of the axiomatization mapped on red and green
components (b). Blue component denotes the absence of
semantic data.

In this raw semantic map, visual transitions between the
different zones of the resulting image are very abrupt and
could produce visual artifacts. Thus, the semantic colorization
has to be smoothed and diffused so that the corresponding
rendering produces soft visual transitions between the two
rendering axis (pollution and atmosphere). Furthermore, the
choice of the diffusion method should be guided by the
constraints of expressive real time rendering. A 2D gaussian
blur being implementable as a composition of two 1D gaussian
blurs (a composition of a horizontal and a vertical blur), this

solution can be particularly efficient in GPU to allow real time
processing even with large convolution matrices (more than
512× 512 kernels).

However, the question of elements that are not associated
with semantic data has still to be addressed. This data is tagged
with blue color in the semantic map as shown in 5(b). One
solution shown in 6(a) is to set the semantic data to neutral
when the corresponding data is lacking (a value of 0.5 for both
Polluting and Creepy parameters). The result shown in 6(a)
after a gaussian blur with a 65x65 kernel would be satisfying
but does not produce a good result when a large part of
the scene is not semantically tagged. We can notice in this
case that semantic data has a very little impact on the sky
(or everything else if the scene was different). In order to
overcome this problem, we propose to generate semantic data
in a consistent manner and use it to fill the empty zones of the
semantic map. This can be achieved by using the intermediate
result shown in 5(b). In this case, the semantic map is stored
in a texture via a framebuffer where the blue component is
considered as an alpha factor. Furthermore, we calculate the
center of the scene in screen coordinates. We then utilize this
data to draw several occurrences of the texture at different
logarithmically decreasing scales centered on the center of the
scene, while cumulating the alpha transparency and applying
a blend constant factor of 2/number of scales. This yields the
result shown in 6(b) which is then blurred as shown in 6(c).

The latter result could be sufficient but does not provide an
easy way to fine-tune the contrast between opposite semantic
axis by applying different weights. This is due to the fact that
opposite directions are stored on the same color component.
Thus, when a weighting is applied before the blur filtering,
one can only expect a slight enhancement of contrast between
the two semantic data. On the other hand, if weighting is
applied after the blur filtering, visual discontinuity would arise.
To overcome this issue, we propose to demux the values by
splitting (two for each semantic axis) and store them on the
four components of the RGBA texture. By doing so the red
component would keep a neutral or Polluting value while
copying a Purifying value into the blue component, which
leads to:
if (R < 0.5) { B = 1− 2 ∗R; R = 0; }
else { R = 2 ∗ (R− 0.5); B = 0; }

The same operation is performed on the green component,
using the alpha one to dispatch its opposite value. This
demuxing operation allows us to perform any operation on
the RGBA texture without any dependency between opposite
semantic values (such as Purifying vs. Polluting). Once the
operations are performed we remux the four values by the
inverse calculation process. As shown in 6(d), semantic data
are demuxed then weighted independently before applying a
blur in one pass on the whole texture. In practice and in
this example the polluting component is kept identical (linear)
while the Purifying one is bumped by applying a power factor
in ]0, 1[. The four resulting components are given in 6(e) with
black = 1 and white = 0 for the negative version. The image
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Fig. 6: Real time processing of semantics for immediate use
by the rendering engine.

at the bottom of figure 6 illustrates the four components after
remuxing and shows a higher contrast. This latter semantic
representation of the initial scene can be used directly for real
time processing. In the next section, we propose expressive
renderings based on semantic data modified this way.

V. RESULT AND DISCUSSION

With only a few semantic data (four in our case), some
3D and post processing effects can be applied to produce
interesting images. In this application example we seek to
highlight the effect of pollution on the environment while
producing a visually interesting rendering starting from a
raw 3D scene. By using both the Polluting and the Creepy
factors associated with objects, post-processing effects such
as smog and specific lighting are generated. Furthermore, in
order to visually enrich the graphical restitution, 3D processes
are applied to produce a painterly rendering of the scene. In
the first example, the texture of the sky (clear or cloudy) is
chosen in accordance with the global pollution level while the
pollution levels generated by each of the polluting objects is
visually represented by adding more or less smog in affected
areas. A green creepy lighting is also generated around objects

according to their atmosphere factors, i.e., value of green
component greater than 0.5, as shown in figure 7.

Fig. 7: The original scene is enriched with a sky texture
that depends on the pollution level of the scene, while a
green creepy lighting reflects the detrimental effect of polluting
objects (factory).

While the visual effect produced by this simple post-
processing is interesting to render the different objects in the
scene according to their natures (e.g., a tree, a factory) the
semantic weightmap can be used to guide the rendering of
the scene on an expressive, artistic level. To illustrate the
potential of expressive rendering based on semantic data we
choose to apply different filters based on the semantic map,
producing different visual aesthetics according to our semantic
coding (polluting/creepy). Here, we want to give a negative
feeling about polluting objects. Thus, polluting objects are
heavily blurred in order to reduce their contours detection
by the associated edge detection process, which eventually
dilute them in the smog effect. By contrast, natural elements
should yield a positive feeling. In this example we choose
to represent these positive entities with a painterly rendering.
This is achieved by scattering the pixels on the Purifying
areas before applying a median filter to visually unify the
result. In order to increase the impressionist style regarding
plants, the higher the Purifying value is assigned, the more
scattered they are. This allows for the following median filter
to produce a stronger brush strokes effect. Also, we apply a
light blur on the objects tagged as Purifying to avoid too many
resulting brushstrokes. In a nutshell, these choices produce
an impressionist rendering on trees and ground while a soft
contrast between polluting and regenerating objects is visible,
as shown in figure 8.

Finally, to further increase the abstraction contrast between
natural elements and the rest of the scene we choose to add a
sobel filter which strengthens these natural elements. The final
GPU rendering is shown in figure 9 while the whole process
is illustrated in figure 1. The latter is produced on a Nvidia
Quadro FX3800 and a 2.46 Ghz BiXeon CPU processor. The
scene used in this application example is composed of 22K
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Fig. 8: A scattering operation (a) and median filter (b) applied
to objects tagged as natural yields a strong impressionist
feeling.

mono-textured triangles and rendered at 800× 600 resolution.
We obtain:

• 475 fps for a basic Phong rendering;
• 155 fps when only computing the semantic weightmap

(see figure 6);
• 80 fps for an expressive rendering without the impres-

sionist style (scattering/median);
• 15 fps for the final rendering, low frame rate mainly due

to the three pass median filter that is applied to unify the
scattering of pixels applied to trees.

In order to illustrate an alternative use of the semantic data,
we propose to highlight the detrimental effect of the polluting
objects on the environment. One way to do this is to simply
invert the sense of the purifying/polluting axis (figure 4).
This produces a totally different visual result as shown in
figure 10 where the factory is highlighted. Furthermore, we
have tested our model in another case where the expressive
graphical restitution is purely functional (as opposed to a
stylized rendering). In this case, we expected the system to
colorize an interior scene depending on the type of objects

Fig. 9: The final semantic based rendering.

Fig. 10: Two different points of view of the same scene with
the use of an inverted semantic map.

present in the room. As shown in figure 11, objects are
successfully identified based on their semantic descriptions.

VI. CONCLUSION AND PERSPECTIVES

We have presented a generic approach to stylization based
on a semantic description of shapes. Our model allows for the
logical inference on the content of a given scene. The result



Fig. 11: An abstracted 3D scene where everyday items
(glasses, vase and magazines on the coffe table, painting on
the wall), furnitures (coffe table, console, bed), equipment (TV,
Dvd player) and architectural elements (walls and floor) have
been successfully tagged and colorized in green, blue, magenta
and grey, respectively.

of this inference yields semantic data that enrich the initial
scene and can be used to perform expressive rendering. We
also have presented an application example based on the model
to stylize a 3D scene in real time. This example successfully
illustrates the capability of our approach to generate useful
semantic data and guide the graphical restitution of a 3D
scene both for artistic and functional use. In our case, a
semantic weightmap is used to apply in real time 3D and
post-processing effects that highlight the detrimental effects
of polluting objects, automatically tagged by the system.

Our future works include a description language that would
allow for dynamically set parameters defining the styles (in our
example: scattering of pixel, blur, sobel and median filters,
and automatic texturing of the sky). We could imagine that
these parameters and their priority order could be defined via
a description language. The description itself could be auto-
matically generated or constrained by the end-user depending
on his needs or artistic expectations. The semantic description
of these parameters could be a general artistic direction (ex. oil
painting, hatching) or precise guidelines for the final rendering
like highlighting one aspect of the scene or managing the
visual persistence of some elements in an animation.
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