
GPU Texture Level of Abstraction in 3D Scenes

Jordane Suarez, Farès Belhadj and Vincent Boyer

L.I.A.S.D. Université Paris 8

2 rue de la liberté

93526 Saint-Denis Cedex, France
{suarez, amsi, boyer}@ai.univ-paris8.fr

Abstract

We present a method to dynamically control the texture level of abstraction in 3D scene. Level of
abstraction consists in visualizing the necessary and sufficient information in an image. Texture
generation is generally realized by a designer in a high resolutions with a low level of abstraction.
Our model manages texture level of abstraction through offline and online segmentation and
lets the designer define the number of colors in the object texture.

Our Model

Starting with a 3D textured model, we create a texture-object model space that takes into
account how the texture is mapped on the geometry. Then the segmentation can be achieved
with 2D image segmentation methods. As we are able to generate textures with different levels
of abstraction, different strategies can be used to map texture level of abstraction on the 3D
model.

Histogram generation

We propose to compute a histogram that takes into account the usage proportion of each
texture in the object space. This computation is necessary once (results can be stored and
referenced by the model) and should not be recomputed during the rendering process. Thus,
for a given mesh and for each triangle Ti that composes the mesh, we compute in a first step :
S
o
i
, the surface of Ti in the object space ; St

i
, the surface of Ti projected in the texture space

according to its texture coordinates Coordi. During this step, we extract the extremal texture
coordinates in order to manage texture repetitions and negative coordinates. In a second step,
we compute P o

i
(resp. P t

i
) by dividing each S

o
i
(resp. St

i
) by the sum of all object space surfaces

S
o (resp. by the sum of all texture space surfaces St). Therefore P o

i
× P

t
i
corresponds to the

triangle area in the object space weighted by its area in the texture space. Finally we use these
proportions to compute color occurrences in a new texture. This is done in the GPU and the
results are stored in the fragment’s alpha component. Additive blending is enabled and, during
this process, for each texel and for each triangle that covers it, the alpha channel accumulates
the quantity P o

i
×P

t
i
. In order to perform color quantities, we scanline (in CPU) the generated

texture pixels to fill a table where colors are unified and quantities are merged. As our histogram
generation is computed in the texture-object model, texture repetition and texture deformation
are treated by our GPU process.

Dynamic Segmentation

We propose to use the hierarchical clustering algorithm [HTF09] to produce dynamic segmen-
tations (we have also implemented a k-means segmentation, but results show that hierarchical
clustering gives better solution while avoiding creation of new colors) : we search among the
set of n colors, each pair of spatially closest ones. Each pair is merged into a new color. All
configurations are saved and the process is reiterated until convergence (only when one single
color remains). The entire process is realized offline and we store the colors computed at each
iteration in a line of a 2D texture. This texture describes a colors tree where we can search for
the closest color at any level or find it using an incremental algorithm. Finally, we render the
model : a GPU shader is used to colorize each fragment using the texture previously generated
according to the texture coordinates and the initial texture. An uniform value l, expressing
the desired level of abstraction, is given as an input of our shader. This value is used as the t
coordinate of the generated texture. Therefore texturing each fragment of the mesh consists in
finding, for this fragment and in the generated texture, the closest color to the one used in the
initial texture : for a given line (t) in the generated texture (containing the set of segmented
textures colors), the closest color (s) to the initial one.

Figure 1: Texture-object model space segmentation on the fish and the tyrannosaurus
model for 4,8,16,32 colors.
The right columns show selected colors in the histogram.
The middle ones show the generated segmented textures.
The last ones show the differences in results depending on the number of colors used.

Figure 2: On the top left, the original 3D scene is presented.
We define a semantic function that gives the dangerousness degree (top middle).
A perception-based strategy is used to apply texture level of abstraction (bottom left).
Additional renderings techniques can be merged as contours (bottom middle).
On the right, texture-object model space segmentation on a complete scene.

Adapting the texture level of abstraction

Our model is able to produce, in real-time, different levels of abstraction for a 3D scene. Every
function (or function composition) which is able to produce values in a given range can be used
as an input for l.
These can be classified into two main categories : static and dynamical-based strategies.
– Static-based strategy : to let the designer choose the level of abstraction ; depending on the
significance of each object in the scene, the user can affect a fixed value to the object.

– Dynamic-based strategy : depending on the depth/orientation of each object, the level of
abstraction is automatically adapted as in [BTM06] ; perception based : the level of abstraction
is automatically adapted at each frame depending on the objects meaning.

Different strategies can be simultaneously combined on the scene, on a part of it (a model), or
on multiple textures used for a given model.

Figure 3: Our model : Starting with a textured 3D polygonal mesh, we project each
polygon into its texture ; then we compute each polygon area and attribute for each texel
the sum of the polygon areas that cover it ; finally we compute colors and histograms to
produce new textures.

Results, Conclusion and Future Work

The right figure shows results obtained applying our model on a complete 3D scene and
gives an overview of the good behavior of our model. Here different shadings (toon, edge
drawing, color enhancement, etc.) follow the texture abstraction ; respectively 13, 16 and 12
colors are chosen for the segmentation of the terrain, the water and the sky. The left figure
illustrates the perception-based strategy on a crowd scene. We consider that characters with a
gun are dangerous. Using this information, we adapt the texture level of abstraction to render
other characters. Note that this scene is composed by 57 textures, 36 Vertex Buffer Objects,
200000 polygons and we obtain 200 frames per second on a NVIDIA Quadro FX while with
a classical OpenGL rendering, we obtain 300 frames per second on the same architecture. We
have presented a method that automatically generates and dynamically uses texture levels of
abstraction in 3D scenes. As future work, first we plan to apply this model to the visualization
of crowd simulation (agent behavior, emergence of group dynamics, etc.) to reduce or emphasize
scene details. Applications on NPR effects (toon shading, abstraction) and illustration will also
be investigated.

References

[BTM06] Barla P., Thollot J., Markosian L. : X-toon : an extended toon shader. In Proceedings
of the 4th international symposium on Non-photorealistic animation and rendering (New York,
NY, USA, 2006), NPAR ’06, ACM, pp. 127–132.
[HTF09] Hastie T., Tibshirani R., Friedman J. : 14.3.12 hierarchical clustering. In The Elements
of Statistical Learning (2nd ed.) (2009), Springer N. Y., (Ed.), vol. 1, New York : Springer, pp.
520–528.


