
Comics stylizations of 3D scenes using GPU

Jordane Suarez, Farès Belhadj and Vincent Boyer

L.I.A.S.D. Université Paris 8
2 rue de la liberté

93526 Saint-Denis Cedex, France
{suarez, amsi, boyer}@ai.univ-paris8.fr

Abstract. We propose a new comics stylization model based on a very
efficient depth map generation. It is designed to render large scenes with
multiple objects as well as single object in real time through a com-
plete GPU implementation. 3D comics stylizations are generally view-
dependent and only use the camera field of view to render the scene. In
all cases, the depth of objects is computed according to the near and far
planes while they are almost without any relation with the range depth
of these objects present in the scene. Our model solves this problem by
computing minimal and maximal values in the depth map. Moreover,
it reproduces and improves better comics stylizations proposed for 2D
images. Results show that our model is suitable for different kinds of 3D
scenes and to produce various comics stylizations.

1 Introduction

Toon shading is one of the most well-known effect in Non-Photorealistic render-
ing. It consists in reproducing simple cartoon shading on a 3D scene and is largely
used in production software or video games. Extensions and improvements have
been proposed to produce different comics styles but two main problems still
remain: large scenes with multiple objects are never considered and one of the
fundamental effects, the color desaturation according to the object depth can be
greatly improved. We propose a comics stylization model to render 3D scenes
in real-time using GPU implementations. It is able to solve this two problems.
A new formulation to compute depth map is proposed and is well adapted for
comics stylizations of both large scene including multiple objects and single ob-
ject. We also present the implementation of different comics styles. In the next
section, we present previous work, our model with the depth map generation
and the stylization process and finally we discuss our results.

2 Related Work

Several methods have been proposed to create comics stylizations of 3D scenes.
The goal of the authors is to obtain real-time methods that can be used for
example in video games. Usually, comics stylizations are only produced using
a particular non-physical lighting model. The proposed lighting model and its



2 Jordane Suarez, Farès Belhadj and Vincent Boyer

associated shading are used to render the 3D scene.

The first method have been published by Lake et al. [1] and is available in
many software solutions and called toon shading. It uses the Lambertian reflec-
tion (computing for each fragment the dot product between its normal and the
normalized light direction vector pointing from the surface to the light source) as
a 1D toon texture index. This technique is easily understandable, implementable,
uses only diffuse reflection term but is view-independent and does not take into
account the remoteness of the considered object.

Different approaches have been studied to provide depth in toon shading.
Texture-based approaches use mip-mapping [2] [3] or a 2D texture [4]. Unfor-
tunately, when the distance grows between the textured object and the viewer
artifacts appear and are more visible using hatching or strokes based rendering.

Mip-maps methods proposed by Klein et al. [2] and Praun et al. [3] provide
art-maps to preserve constant-sized strokes or hatching patterns at different
depths and levels of lighting. Unfortunately these techniques only focus on pat-
terns used to render the object in the scene. However, the rendering of different
objects in the same scene is never studied.

The Xtoon model [4] exploits the Lambert’s term on the same principle as the
toon shading and uses a 2D texture index by adding a notion of details which
vary according to the object depth or its orientation. As its goal is more the
visual abstraction than the rendering speed, it introduces the Level Of Abstrac-
tion notion instead of classical LOD [5] [6]. Level Of Abstraction can be achieved
through tone or shape details. These can be easily realized by a designer using
a 2D texture. A GPU implementation is also proposed for real time renderings.
But even if this process is view-dependent, it does not transmit the desired effect
when the viewpoint is inside a large scene. It can be used for a single object but
is not well-adapted for a large scene with multiple objects.

Other 3D methods try to improve toon shading focusing on particular ef-
fects. Anjyo et al. [7] have proposed an approach that renders comics-stylized
highlights on 3D objects. Starting with an initial highlight design, using the
Blinn’s specular model, highlight shapes are created through several functions.
Nevertheless the comics stylization for a global 3D scene is never studied.

A 2D comics stylization model has been proposed by Sauvaget et al. [8]. This
method generates comics images from a single photograph using a depth map
to avoid the depth-less color problem and colorizes images with a specified at-
mosphere. It extracts image structures from the original photograph, generates
a depth map from them and finally performs a treatment on a segmented image
to give a comics style. Note that the generated depth map can be enhanced by
the user and different comics styles have been proposed using depth information.



Comics stylizations of 3D scenes using GPU 3

This technique works well with a specific depth map but needs to be adapted to
3D scenes and even more animations.

3 Our Model

Our model is designed to render a 3D scene including multiple objects with
a view-dependent comics style. Based on the stylization process described by
Sauvaget et al. [8], we propose to generate a scene depth map to render it with
different comics styles. We apply a stylization shader using this map and the im-
age of the rendered scene. We convert the texture RGB information into HSV.
Then, based on the depth map, we desaturate these values and, if needed, we
apply an ambiance color. Moreover, we can use an edge detection algorithm as
Prewitt or Laplace to finally compose the result image.

However, one of the main problems is the calculation of the appropriate depth
map for a comics stylization rendering. This map is used both for the rendering
and the edge detection and its computation is a crucial step. As we demonstrate
hereafter, a depth map linearly or logarithmically interpolated does not give
suitable results. In the following, we present our method to generate a suitable
depth map and our rendering process including desaturation, ambiance color
and edge stylization.

3.1 Depth Map Generation

Classical computation of the depth map consists in calculating the fragment
depth according to the camera field of view (near and far plane).
It is well-known that Z-buffer is non linear:

depth =
far + near

far − near
+

−2× far × near

Z × (far − near)
(1)

A better precision is obtained close to the camera near plane. Moreover, this
precision is increased according to the near/far ratio (more this ratio is greater,
more the Z values are densely grouped around the near plane). Thus, the Z-
buffer is not convenient to computations that need an uncompressed precision
along the Z axis. Unfortunately, solutions that try to interpolate the Z-buffer
values fall into a depth buffer precision problem. In fact, Z-buffer values are in
[0.0 ; 1.0] and have been already discretized. All following proposed solutions
use the depth fragment value, hereafter noted zfrag.
Intuitively, a linear interpolation can be proposed as:

depth = 1.0−
zfrag − near

far − near
(2)



4 Jordane Suarez, Farès Belhadj and Vincent Boyer

In that case, the depth depends on the camera field of view (near and far
plane) and does not take into account the position of objects in the scene (for
example, when near plane is 0.1, far plane is 1000.0 and objects in the scene are
in [0.1 ; 100], depth values are around 0.9 and 1.0 for all objects) and the depth
map is not suitable for any stylizations (see Figure 2).
Xtoon proposes a logarithmic interpolation :

depth = 1.0−
log zfrag

near

log far
near

(3)

It produces a detailed and suitable depth map only when the objects are
close to the near plane. As one can see in Figure 2, the problem still remains
when the objects are close to the far plane.

To address this problem, we propose to calculate the depth map according to
the minimum and maximum Z values of objects in the camera field of view as
follow:

1. We render the scene and store the depth of each fragment into a texture.
To preserve the 32-bits depth precision, either we use a 32-bit float-valued
intensity texture or each depth is stored in four components (RGBA) tex-
els using shifting and mask operations. At the end of this step, we obtain
an initial RGBA texture T0 in which each texel contains the depth of the
fragment. The texture size is (W,H) where W and H could be different but
must be 2n for some integer n;

2. Starting with T0(W,H), our shader creates a new texture T1(W, H
2
) in which

we store alternatively minimal and maximal values of four texels of T0 as
follow:

∀x ∈ 2N, ∀y ∈ N, t
′

(x, y) = min
i,j∈{0,1}

t(x+ i, 2y + j)

∀x ∈ 2N+ 1, ∀y ∈ N, t
′

(x, y) = max
i,j∈{0,1}

t(x− i, 2y + j)

Where t
′

is a texel of T1 and t a texel of T0 (see Figure 1).

3. As we obtain a texture T1(W, H
2
) with alternatively minimal and maximal

values, we construct a texture T2(
W
2
, H

4
) in which we store alternatively the

minimal and the maximal values of the four previous minimal and maximal
values stored in T1:

∀x ∈ 2N, ∀y ∈ N, t
′′

(x, y) = min
i,j∈{0,1}

t
′

(2(x+ i), 2y + j)

∀x ∈ 2N+ 1, ∀y ∈ N, t
′′

(x, y) = max
i,j∈{0,1}

t
′

(2(x+ i)− 1, 2y + j)

We repeat this process until we obtain a texture of size (2, 1).



Comics stylizations of 3D scenes using GPU 5

As shown in Figure 1, minimum and maximum values are finally stored in the
first and the second pixels. The complexity of this algorithm is linear.

Min

Max

Min

Max

Fig. 1. Minimal and maximal depth computation from left to right: T0, T1, T2 and
final result.

An interpolation based on the minimum and maximum depth such as the
following formula, produces a map, hereafter called minmax, covering the entire
depth values.

depth = 1.0−
zfrag −min

max−min
(4)

Figure 2 presents a comparison between linear, logarithmic and minmax
depth computation. On the left, we consider a scene with near plane at 0.1,
far plane at 1000.0 and objects close to near plane. On the right side objects are
close to the far plane. The top presents a global view of the three interpolations
and the bottom shows only the object depth range. As one can see, our method
ensures that produced depth map values are always uniformly distributed.

3.2 Stylization

We use the depth map previously generated to stylize our rendering. We apply
desaturation, ambiance colorization and contours drawing to produce different
comics stylized renderings. At this step, we have an interpolated minmax Depth
Map DM and a texture TS representing the scene. Let t(x, y, h, s, v) be the texel
(x, y) of TS and d(x, y, l) be the texel (x, y) of DM . We draw a quad that covers
entirely the viewport to obtain one fragment f per pixel. Our rendering process
is realized in the image space. Since the comics stylization do not influence the
result image values:

fv = tv (5)



6 Jordane Suarez, Farès Belhadj and Vincent Boyer

Fig. 2. Comparison of the different depth interpolation methods.

Desaturation: According to a depth map information, the desaturation is one
of the most important things in comics stylization. We propose two different
stylizations. The first one reproduces comics stylization proposed by Sauvaget
et al. [8]:

fs = ts × (1.0− dl) (6)

To enhance the contrast with the object distance, we also propose a quadratic
computation:

fs = ts ×
√

1.0− dl (7)

Colorization: Four different models are proposed, two of them reproduce Sauvaget
et al. method [8]. The first one follows a classical comics stylization scheme and
preserve the hue in the result image:

fh = th (8)

The second one reproduces an atmosphere comics stylization. In that case, the
user gives a hue ah to the atmosphere and the result image is colored as:

fh = ah (9)

As we have a high precision depth map, we are able to colorize the result image
with an atmosphere according to the depth of the object. We propose a linear
and a quadratic interpolation:

fh = th × (1.0− dl) + ah × dl (10)



Comics stylizations of 3D scenes using GPU 7

fh = th ×

√

1.0− dl + ah ×

√

dl (11)

Note that the desaturation and the colorization are independent from each other
and can be also combined according to user choices.

Contour drawing: We are able to enhance the result image using contours. In
comics stylizations, contours are often produced to depict a small depth dif-
ference between two close objects. Therefore, according to our depth map, we
implement image based solutions to create contours. Different algorithms are
proposed: Prewitt and Laplace. The threshold is given by the user and contours
are created when the detection algorithm finds on the DM a value greater than
the threshold. This solution provides many different effects. A small threshold
produces contours between close objects while a more important value creates
black flat areas.

4 Results

As a preliminary result, Figure 3 presents a comparison between the linear (left),
the logarithmic (center) and the minmax (right) methods. For a given scene (top
of the figure), depth map produced for the three different methods (see the second
line). As one can see, only our minmax depth map covers the distance object
range while the other approaches take always into account near and far planes.
Thus, the image produced by our method is more detailed and contrasted. We
finally add a sepia atmosphere to render the scene (see the third line).

Figure 4 illustrates different stylizations realized by our model. At the first
line, we use the quadratic interpolation (see equation 11), a red atmosphere to
compute the resulting hue and a Laplace contour detection. We can see that, at
the foreground, colors of flowers are much more preserved while the background
mountains are colored with the atmosphere color. At the third line, we produce
other effects including black flat areas with Prewitt algorithm and a green atmo-
sphere. These results show that our model is more suitable than previous ones
to realize comics stylization effects on large scenes. Finally, at the center-line, we
demonstrate that this model is also very efficient for a single object. In that case,
a quadratic desaturation (see equation 7), an atmosphere effect (see equation 9)
and a Prewitt contour detection algorithm are used.

5 Conclusion

We have presented a new comics stylization model to render both single object
or large scenes with multiple objects. Our model is real time, the frame rate is
almost divided by 2 compared to the graphic pipeline (mountains scene is com-
posed by one million vertices, the frame rate is 512 fps using OpenGL pipeline
and 260 fps with our model using a depth map of 512 x 512 pixels). A linear
depth map is computed in which the closest and farthest objects in the camera



8 Jordane Suarez, Farès Belhadj and Vincent Boyer

Fig. 3. Results produced using linear, logarithmic and minmax methods.

view are considered. Thus, we are able to produce a large variety of comics styl-
izations including desaturation, atmosphere, contours and black flat areas. Our
model is suitable for any users since it is completely user-definable through a
convenient GUI. As a future work, we plan to realize a treatment on the depth
map to ensure temporal coherence during animation. In fact, if a closest or fare’s
object in the scene appears in a frame, our depth map will be affected and a



Comics stylizations of 3D scenes using GPU 9

Fig. 4. Various examples realized with our model.

brutal transition will probably disturb the viewer. Moreover, we aim to improve
our model integrating new styles like blurred, complementary colors or many
other styles depending on the depth map.



10 Jordane Suarez, Farès Belhadj and Vincent Boyer

6 Acknowledgements

This work has been performed within the Virtual Clone Studio project which
is one of the Serious Games projects sponsored by the Ministry of Economy,
Industry and Employment of the French Government.

References

1. Lake, A., Marshall, C., Harris, M., Blackstein, M.: Stylized rendering techniques for
scalable real-time 3d animation. In: NPAR ’00: Proceedings of the 1st international
symposium on Non-photorealistic animation and rendering, New York, NY, USA,
ACM (2000) 13–20

2. Klein, A.W., Li, W., Kazhdan, M.M., Corrêa, W.T., Finkelstein, A., Funkhouser,
T.A.: Non-photorealistic virtual environments. In: SIGGRAPH ’00: Proceedings of
the 27th annual conference on Computer graphics and interactive techniques, New
York, NY, USA, ACM Press/Addison-Wesley Publishing Co. (2000) 527–534

3. Ewins, J.P., Waller, M.D., White, M., Lister, P.F.: Mip-map level selection for
texture mapping. IEEE Transactions on Visualization and Computer Graphics 4

(1998) 317–329
4. Barla, P., Thollot, J., Markosian, L.: X-toon: an extended toon shader. In: NPAR

’06: Proceedings of the 4th international symposium on Non-photorealistic anima-
tion and rendering, New York, NY, USA, ACM (2006) 127–132

5. Lindstrom, P., Koller, D., Ribarsky, W., Hodges, L.F., Faust, N., Turner, G.A.:
Real-time, continuous level of detail rendering of height fields. In: SIGGRAPH ’96:
Proceedings of the 23rd annual conference on Computer graphics and interactive
techniques, New York, NY, USA, ACM (1996) 109–118

6. Olano, M., Kuehne, B., Simmons, M.: Automatic shader level of detail. In:
HWWS ’03: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference
on Graphics hardware, Aire-la-Ville, Switzerland, Switzerland, Eurographics Asso-
ciation (2003) 7–14

7. Anjyo, K.i., Hiramitsu, K.: Stylized highlights for cartoon rendering and animation.
IEEE Comput. Graph. Appl. 23 (2003) 54–61

8. Sauvaget, C., Boyer, V.: Comics stylization from photographs. In: ISVC ’08: Pro-
ceedings of the 4th International Symposium on Advances in Visual Computing,
Berlin, Heidelberg, Springer-Verlag (2008) 1125–1134


