Image segmentation

Model of a segmented femur. It shows the outer surface (red),
the surface between compact bone and spongy bone (green) and
the surface of the bone marrow (blue).

In computer vision, image segmentation is the process
of partitioning a digital image into multiple segments
(sets of pixels, also known as superpixels). The goal of
segmentation is to simplify and/or change the representa-
tion of an image into something that is more meaningful
and easier to analyze.!''?! Image segmentation is typically
used to locate objects and boundaries (lines, curves, etc.)
inimages. More precisely, image segmentation is the pro-
cess of assigning a label to every pixel in an image such
that pixels with the same label share certain characteris-
tics.

The result of image segmentation is a set of segments that
collectively cover the entire image, or a set of contours ex-
tracted from the image (see edge detection). Each of the

pixels in a region are similar with respect to some charac-
teristic or computed property, such as color, intensity, or
texture. Adjacent regions are significantly different with
respect to the same characteristic(s).!'! When applied to a
stack of images, typical in medical imaging, the resulting
contours after image segmentation can be used to create
3D reconstructions with the help of interpolation algo-
rithms like Marching cubes.

1 Applications

Some of the practical applications of image segmentation
are:

o Content-based image retrieval
e Machine vision
e Medical imaging!3!#!

e Locate tumors and other pathologies!>!®!
e Measure tissue volumes

e Diagnosis, study of anatomical structure

Surgery planning
e Virtual surgery simulation

e Intra-surgery navigation
e Object detection!”!

e Pedestrian detection

e Face detection

e Brake light detection

e Locate objects in satellite images (roads,
forests, crops, etc.)

e Recognition Tasks

e Face recognition
e Fingerprint recognition

e Iris recognition
o Traffic control systems

e Video surveillance

Several general-purpose algorithms and techniques have
been developed for image segmentation. To be useful,
these techniques must typically be combined with a do-
main’s specific knowledge in order to effectively solve the
domain’s segmentation problems.
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2 Thresholding

The simplest method of image segmentation is called the
thresholding method. This method is based on a clip-level
(or a threshold value) to turn a gray-scale image into a
binary image. There is also a balanced histogram thresh-
olding.

The key of this method is to select the threshold value (or
values when multiple-levels are selected). Several pop-
ular methods are used in industry including the maxi-
mum entropy method, Otsu’s method (maximum vari-
ance), and k-means clustering.

Recently, methods have been developed for thresholding
computed tomography (CT) images. The key idea is that,
unlike Otsu’s method, the thresholds are derived from the
radiographs instead of the (reconstructed) image(®! .1

New methods suggested the usage of multi-dimensional
fuzzy rule-based non-linear thresholds. In these works
decision over each pixel’s membership to a segment is
based on multi-dimensional rules derived from fuzzy
logic and evolutionary algorithms based on image lighting
environment and application.!'!

3 Clustering methods

Main article: Data clustering

Source image.

Image after running k-means with kK = /6. Note that a
common technique to improve performance for large
images is to downsample the image, compute the

et —

4 COMPRESSION-BASED METHODS

clusters, and then reassign the values to the larger image
if necessary.

The K-means algorithm is an iterative technique that is
used to partition an image into K clusters.!'!! The basic
algorithm is

1. Pick K cluster centers, either randomly or based on
some heuristic

2. Assign each pixel in the image to the cluster that
minimizes the distance between the pixel and the
cluster center

3. Re-compute the cluster centers by averaging all of
the pixels in the cluster

4. Repeat steps 2 and 3 until convergence is attained
(i-e. no pixels change clusters)

In this case, distance is the squared or absolute differ-
ence between a pixel and a cluster center. The difference
is typically based on pixel color, intensity, texture, and lo-
cation, or a weighted combination of these factors. K can
be selected manually, randomly, or by a heuristic. This
algorithm is guaranteed to converge, but it may not return
the optimal solution. The quality of the solution depends
on the initial set of clusters and the value of K.

"W 4 Compression-based methods

Compression based methods postulate that the optimal
segmentation is the one that minimizes, over all possible
segmentations, the coding length of the data.[?!l!3] The
connection between these two concepts is that segmenta-
tion tries to find patterns in an image and any regularity
in the image can be used to compress it. The method de-
scribes each segment by its texture and boundary shape.
Each of these components is modeled by a probability

- distribution function and its coding length is computed

~ E— —
. asfollows:

-

1. The boundary encoding leverages the fact that re-
gions in natural images tend to have a smooth con-
tour. This prior is used by Huffman coding to en-
code the difference chain code of the contours in
an image. Thus, the smoother a boundary is, the
shorter coding length it attains.

2. Texture is encoded by lossy compression in a way
similar to minimum description length (MDL) prin-
ciple, but here the length of the data given the model
is approximated by the number of samples times
the entropy of the model. The texture in each re-
gion is modeled by a multivariate normal distribu-
tion whose entropy has closed form expression. An
interesting property of this model is that the esti-
mated entropy bounds the true entropy of the data
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from above. This is because among all distributions
with a given mean and covariance, normal distribu-
tion has the largest entropy. Thus, the true coding
length cannot be more than what the algorithm tries
to minimize.

For any given segmentation of an image, this scheme
yields the number of bits required to encode that image
based on the given segmentation. Thus, among all pos-
sible segmentations of an image, the goal is to find the
segmentation which produces the shortest coding length.
This can be achieved by a simple agglomerative clustering
method. The distortion in the lossy compression deter-
mines the coarseness of the segmentation and its optimal
value may differ for each image. This parameter can be
estimated heuristically from the contrast of textures in an
image. For example, when the textures in an image are
similar, such as in camouflage images, stronger sensitivity
and thus lower quantization is required.

S Histogram-based methods

Histogram-based methods are very efficient compared to
other image segmentation methods because they typically
require only one pass through the pixels. In this tech-
nique, a histogram is computed from all of the pixels in
the image, and the peaks and valleys in the histogram
are used to locate the clusters in the image.''! Color or
intensity can be used as the measure.

A refinement of this technique is to recursively apply the
histogram-seeking method to clusters in the image in or-
der to divide them into smaller clusters. This operation is
repeated with smaller and smaller clusters until no more
clusters are formed.!!1114]

One disadvantage of the histogram-seeking method is
that it may be difficult to identify significant peaks and
valleys in the image.

Histogram-based approaches can also be quickly adapted
to apply to multiple frames, while maintaining their sin-
gle pass efficiency. The histogram can be done in mul-
tiple fashions when multiple frames are considered. The
same approach that is taken with one frame can be applied
to multiple, and after the results are merged, peaks and
valleys that were previously difficult to identify are more
likely to be distinguishable. The histogram can also be
applied on a per-pixel basis where the resulting informa-
tion is used to determine the most frequent color for the
pixel location. This approach segments based on active
objects and a static environment, resulting in a different
type of segmentation useful in Video tracking.

6 Edge detection

Edge detection is a well-developed field on its own within

image processing. Region boundaries and edges are
closely related, since there is often a sharp adjustment in
intensity at the region boundaries. Edge detection tech-
niques have therefore been used as the base of another
segmentation technique.

The edges identified by edge detection are often dis-
connected. To segment an object from an image how-
ever, one needs closed region boundaries. The desired
edges are the boundaries between such objects or spatial-
taxons.[1>1 [16]

Spatial-taxons!!” are information granules.,''®! consist-
ing of a crisp pixel region, stationed at abstraction levels
within a hierarchical nested scene architecture. They are
similar to the Gestalt psychological designation of figure-
ground, but are extended to include foreground, object
groups, objects and salient object parts. Edge detection
methods can be applied to the spatial-taxon region, in the
same manner they would be applied to a silhouette. This
method is particularly useful when the disconnected edge
is part of an illusory contour!!?1(2%]

Segmentation methods can also be applied to edges ob-
tained from edge detectors. Lindeberg and Li?!! de-
veloped an integrated method that segments edges into
straight and curved edge segments for parts-based ob-
ject recognition, based on a minimum description length
(MDL) criterion that was optimized by a split-and-
merge-like method with candidate breakpoints obtained
from complementary junction cues to obtain more likely
points at which to consider partitions into different seg-
ments.

7 Dual clustering method

This method is a combination of three characteristics of
the image: partition of the image based on histogram
analysis is checked by high compactness of the clusters
(objects), and high gradients of their borders. For that
purpose two spaces has to be introduced: one space is
the one-dimensional histogram of brightness H = H(B),
the second space — the dual 3-dimensional space of the
original image itself B = B(x, y). The first space allows to
measure how compact is distributed the brightness of the
image by calculating minimal clustering kmin. Thresh-
old brightness T corresponding to kmin defines the binary
(black-and-white) image — bitmap b = ¢(x, y), where (X,
y)=0,if B(x,y) < T, and @(x,y) =1, if B(x,y) 2 T. The
bitmap b is an object in dual space. On that bitmap a mea-
sure has to be defined reflecting how compact distributed
black (or white) pixels are. So, the goal is to find objects
with good borders. For all T the measure MDC =G/(k-L)
has to be calculated (where k is difference in brightness
between the object and the background, L is length of all
borders, and G is mean gradient on the borders). Maxi-
mum of MDC defines the segmentation.*!
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8 Region-growing methods

Region-growing methods rely mainly on the assumption
that the neighboring pixels within one region have similar
values. The common procedure is to compare one pixel
with its neighbors. If a similarity criterion is satisfied, the
pixel can be set to belong to the cluster as one or more
of its neighbors. The selection of the similarity criterion
is significant and the results are influenced by noise in all
instances.

The method of Statistical Region Merging!??! (SRM)
starts by building the graph of pixels using 4-
connectedness with edges weighted by the absolute
value of the intensity difference. Initially each pixel
forms a single pixel region. SRM then sorts those edges
in a priority queue and decide whether or not to merge
the current regions belonging to the edge pixels using a
statistical predicate.

One region-growing method is the seeded region growing
method. This method takes a set of seeds as input along
with the image. The seeds mark each of the objects to be
segmented. The regions are iteratively grown by compar-
ison of all unallocated neighboring pixels to the regions.
The difference between a pixel’s intensity value and the
region’s mean, 9 , is used as a measure of similarity. The
pixel with the smallest difference measured in this way
is assigned to the respective region. This process con-
tinues until all pixels are assigned to a region. Because
seeded region growing requires seeds as additional input,
the segmentation results are dependent on the choice of
seeds, and noise in the image can cause the seeds to be
poorly placed.

Another region-growing method is the unseeded region
growing method. It is a modified algorithm that does not
require explicit seeds. It starts with a single region A; —
the pixel chosen here does not markedly influence the final
segmentation. At each iteration it considers the neighbor-
ing pixels in the same way as seeded region growing. It
differs from seeded region growing in that if the mini-
mum ¢ is less than a predefined threshold 7' then it is
added to the respective region A; . If not, then the pixel
is considered different from all current regions A; and a
new region A, 1 is created with this pixel.

One variant of this technique, proposed by Haralick and
Shapiro (1985),[! is based on pixel intensities. The mean
and scatter of the region and the intensity of the candi-
date pixel are used to compute a test statistic. If the test
statistic is sufficiently small, the pixel is added to the re-
gion, and the region’s mean and scatter are recomputed.
Otherwise, the pixel is rejected, and is used to form a new
region.

A special region-growing method is called A\ -connected
segmentation (see also lambda-connectedness). It is
based on pixel intensities and neighborhood-linking
paths. A degree of connectivity (connectedness) is cal-
culated based on a path that is formed by pixels. For a

certain value of A , two pixels are called A\ -connected if
there is a path linking those two pixels and the connect-
edness of this path is at least A . \ -connectedness is an
equivalence relation.**!

Split-and-merge segmentation is based on a quadtree par-
tition of an image. It is sometimes called quadtree seg-
mentation.

This method starts at the root of the tree that represents
the whole image. If it is found non-uniform (not homo-
geneous), then it is split into four son squares (the split-
ting process), and so on. If, in contrast, four son squares
are homogeneous, they are merged as several connected
components (the merging process). The node in the tree
is a segmented node. This process continues recursively
until no further splits or merges are possible.?>!126] When
a special data structure is involved in the implementa-
tion of the algorithm of the method, its time complex-
ity can reach O(nlogn) , an optimal algorithm of the
method.?!

9 Partial differential
based methods

equation-

Using a partial differential equation (PDE)-based method
and solving the PDE equation by a numerical scheme, one
can segment the image.[*8] Curve propagation is a popular
technique in this category, with numerous applications to
object extraction, object tracking, stereo reconstruction,
etc. The central idea is to evolve an initial curve towards
the lowest potential of a cost function, where its defini-
tion reflects the task to be addressed. As for most inverse
problems, the minimization of the cost functional is non-
trivial and imposes certain smoothness constraints on the
solution, which in the present case can be expressed as
geometrical constraints on the evolving curve.

9.1 Parametric methods

Lagrangian techniques are based on parameterizing the
contour according to some sampling strategy and then
evolve each element according to image and internal
terms. Such techniques are fast and efficient, however
the original “purely parametric” formulation (due to Kass,
Witkin and Terzopoulos in 1987 and known as "snakes"),
is generally criticized for its limitations regarding the
choice of sampling strategy, the internal geometric prop-
erties of the curve, topology changes (curve splitting
and merging), addressing problems in higher dimensions,
etc.. Nowadays, efficient “discretized” formulations have
been developed to address these limitations while main-
taining high efficiency. In both cases, energy minimiza-
tion is generally conducted using a steepest-gradient de-
scent, whereby derivatives are computed using, e.g., finite
differences.
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9.2 Level set methods

The level set method was initially proposed to track
moving interfaces by Osher and Sethian in 1988 and
has spread across various imaging domains in the late
90s. It can be used to efficiently address the problem
of curve/surface/etc. propagation in an implicit manner.
The central idea is to represent the evolving contour us-
ing a signed function whose zero corresponds to the ac-
tual contour. Then, according to the motion equation
of the contour, one can easily derive a similar flow for
the implicit surface that when applied to the zero level
will reflect the propagation of the contour. The level set
method affords numerous advantages: it is implicit, is
parameter-free, provides a direct way to estimate the ge-
ometric properties of the evolving structure, allows for
change of topology, and is intrinsic. It can be used to
define an optimization framework, as proposed by Zhao,
Merriman and Osher in 1996. One can conclude that it
is a very convenient framework for addressing numer-
ous applications of computer vision and medical image
analysis.[?! Research into various level set data structures
has led to very efficient implementations of this method.

9.3 Fast marching methods

The fast marching method has been used in image
segmentation,**! and this model has been improved (per-
mitting a both positive and negative speed propagation
speed) in an approach called the generalized fast march-
ing method.l3!

10 Variational methods

The goal of variational methods is to find a segmentation
which is optimal with respect to a specific energy func-
tional. The functionals consist of a data fitting term and a
regularizing terms. A classical representative is the Potts
model defined for an image f by

*argmin,y||Vulo +/(u — f)?da.

A minimizer u* is a piecewise constant image which has
an optimal tradeoff between the squared L2 distance to
the given image f and the total length of its jump set.
The jump set of u™* defines a segmentation. The relative
weight of the energies is tuned by the parameter v > 0
. The binary variant of the Potts model, i.e., if the range
of u is restricted to two values, is often called Chan-Vese
model.*?! An important generalization is the Mumford-
Shah model 3! given by

*argminu’K'y\K|+,u/ |Vu|2dx+/(uff)2dx.
KC

The functional value is the sum of the total length of the
segmentation curve K , the smoothness of the approxi-
mation u , and its distance to the original image f . The
weight of the smoothness penalty is adjusted by p > 0
The Potts model is often called piecewise constant
Mumford-Shah model as it can be seen as the degener-
ate case i — oo . The optimization problems are known
to be NP-hard in general but near-minimizing strategies
work well in practice. Classical algorithms are graduated
non-convexity and Ambrosio-Tortorelli approximation.

11 Graph partitioning methods

Graph partitioning methods are an effective tools for im-
age segmentation since they model the impact of pixel
neighborhoods on a given cluster of pixels or pixel, un-
der the assumption of homogeneity in images. In these
methods, the image is modeled as a weighted, undirected
graph. Usually a pixel or a group of pixels are associated
with nodes and edge weights define the (dis)similarity be-
tween the neighborhood pixels. The graph (image) is then
partitioned according to a criterion designed to model
“good” clusters. Each partition of the nodes (pixels) out-
put from these algorithms are considered an object seg-
ment in the image. Some popular algorithms of this cat-
egory are normalized cuts,** random walker,'*! min-
imum cut,*®! isoperimetric partitioning,’*”! minimum
spanning tree-based segmentation,*®! and segmentation-
based object categorization.

11.1 Markov Random Fields

The application of Markov random fields (MRF) for
images was suggested in early 1984 by Geman and
Geman.!*! Their strong mathematical foundation and
ability to provide a global optima even when defined on
local features proved to be the foundation for novel re-
search in the domain of image analysis, de-noising and
segmentation. MRFs are completely characterized by
their prior probability distributions, marginal probability
distributions, cliques, smoothing constraint as well as cri-
terion for updating values. The criterion for image seg-
mentation using MRFs is restated as finding the labelling
scheme which has maximum probability for a given set
of features. The broad categories of image segmentation
using MRFs are supervised and unsupervised segmenta-
tion.

11.1.1 Supervised Image Segmentation using MRF
and MAP

In terms of image segmentation, the function that MRFs
seek to maximize is the probability of identifying a la-
belling scheme given a particular set of features are
detected in the image. This is a restatement of the
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Maximum a posteriori estimation method.

MRF neighborhood for a chosen pixel

The generic algorithm for image segmentation using
MAP is given below:

1. Define the neighborhood of each feature (random vari-
able in MRF terms). Generally this includes 1st order or
2nd order neighbors. 2. Set initial probabilities P(f ;)
for each feature as O or 1, where f ; €X is the set con-
taining features extracted for pixel ¢ and define an initial
set of clusters. 3. Using the training data compute the
mean ( u ;) and variance ( o ;) for each label. This is
termed as class statistics. 4. Compute the marginal dis-
tribution for the given labeling scheme P(f ; |l ;) us-
ing Bayes’ theorem and the class statistics calculated ear-

lier. A Gaussian model is used for the marginal distribu-
 (Fimn))?

tion. 20(13)2

T )1 e 5. Calculate the probability

of each class label given the neighborhood defined pre-
viously. Clique potentials are used to model the social
impact in labeling. 6. Iterate over new prior probabili-
ties and redefine clusters such that these probabilities are
maximized. This is done using a variety of optimization
algorithms described below. 7. Stop when probability is
maximized and labeling scheme does not change. The
calculations can be implemented in log likelihood terms
as well.

11.1.2 Optimization algorithms

Each optimization algorithm is an adaptation of models
from a variety of fields and they are set apart by their
unique cost functions. The common trait of cost functions
is to penalize change in pixel value as well as difference in
pixel label when compared to labels of neighboring pix-
els.

11  GRAPH PARTITIONING METHODS

Iterated Conditional Modes/Gradient Descent The
ICM algorithm tries to reconstruct the ideal labeling
scheme by changing the values of each pixel over each
iteration and evaluating the energy of the new labeling
scheme using the cost function given below,

Oé(l - 5(1 il initiali) + B q €N@ (1 - 5(l i alq(i) )) .

where « is the penalty for change in pixel label and f is
the penalty for difference in label between neighboring
pixels and chosen pixel. Here N (7) is neighborhood of
pixel i and ¢ is the Kronecker delta function. A major
issue with ICM is that, similar to gradient descent, it has
a tendency to rest over local maxima and thus not obtain
a globally optimal labeling scheme.

Simulated Annealing(SA) Derived as an analogue of
annealing in metallurgy, SA uses change in pixel label
over iterations and estimates the difference in energy of
each newly formed graph to the initial data. If the newly
formed graph is more profitable, in terms of low energy
cost, given by:

AU =U " _[J old

e, if AU <=0,

pew. if AU >0 and 6 < e 2U/T,
lqld
2

L =

the algorithm selects the newly formed graph. Simu-
lated annealing requires the input of temperature sched-
ules which directly affects the speed of convergence of
the system, as well as energy threshold for minimization
to occur.

Alternative Algorithms A range of other meth-
ods exist for solving simple as well as higher or-
der MRFs. They include Maximization of Posterior
Marginal, Multi-scale MAP estimation,*®! Multiple Res-
olution segmentation'*!) and more. Apart from likelihood
estimates, graph-cut using maximum flow!*?! and other
highly constrained graph based methods!**!*4 exist for
solving MRFs.

11.1.3 Unsupervised Image Segmentation using
MREF and Expectation Maximization

A subset of unsupervised machine learning, the
Expectation—-maximization algorithm is utilized to
iteratively estimate the a posterior probabilities and dis-
tributions of labeling when no training data is available
and no estimate of segmentation model can be formed.
A general approach is to use histograms to represent the
features of an image and proceed as outlined briefly in
the 3-step algorithm mentioned below,

1. A random estimate of the model parameters (same as
in supervised learning) is utilized.
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2. E-Step: Estimate class statistics based on the random
segmentation model defined. Using these, compute the
conditional probability of belonging to a label given the
feature set is calculated using naive Bayes’ theorem.
POIS) = S0P
possible labels.

Here A\eA is the set of all

3. M-Step: The established relevance of a given feature
set to a labeling scheme is now used to compute the a
priori estimate of a given label in the second part of the
algorithm. Since the actual number of total labels is un-
known (from a training data set), a hidden estimate of the
number of labels given by the user is utilized in compu-
tations.

P()\) _ ZAsA‘g(l)‘lfi)

features.

where 2 is the set of all possible

Segmentation of color image using HMRF-EM model

11.1.4 Disadvantages of MAP and EM based image
segmentation

1. Exact MAP estimates cannot be easily computed.

2. Approximate MAP estimates are computationally ex-
pensive to calculate.

3. Extension to multi-class labeling degrades perfor-
mance and increases storage required.

4. Reliable estimation of parameters for EM is required
for global optima to be achieved.

5. Based on method of optimization, segmentation may
cluster to local minima.

11.1.5 Implementations of MRF based Image seg-
mentation

1. HMRF-EM Implementation of EM algorithm based
image segmentation.

2. Zoltan Kato’s implementation of supervised image
segmentation using MRFs, 4311461

3. Purdue University’s implementation of Discrete MRF
and their application to segmentation.

4. Gaussian Mixture Model based HMRF segmentation
in MATLAB.

5. CMU’s implementation of multiple graph cut based
segmentation algorithms.

12 Watershed transformation

The watershed transformation considers the gradient
magnitude of an image as a topographic surface. Pixels
having the highest gradient magnitude intensities (GMIs)
correspond to watershed lines, which represent the re-
gion boundaries. Water placed on any pixel enclosed by a
common watershed line flows downhill to a common lo-
cal intensity minimum (LIM). Pixels draining to a com-
mon minimum form a catch basin, which represents a
segment.

13 Model based segmentation

The central assumption of such an approach is that struc-
tures of interest/organs have a repetitive form of geom-
etry. Therefore, one can seek for a probabilistic model
towards explaining the variation of the shape of the organ
and then when segmenting an image impose constraints
using this model as prior. Such a task involves (i) registra-
tion of the training examples to a common pose, (ii) prob-
abilistic representation of the variation of the registered
samples, and (iii) statistical inference between the model
and the image. State of the art methods in the literature
for knowledge-based segmentation involve active shape
and appearance models, active contours and deformable
templates and level-set based methods.

14 Multi-scale segmentation

Image segmentations are computed at multiple scales in
scale space and sometimes propagated from coarse to fine
scales; see scale-space segmentation.

Segmentation criteria can be arbitrarily complex and may
take into account global as well as local criteria. A com-
mon requirement is that each region must be connected
in some sense.

14.1 One-dimensional hierarchical signal
segmentation

Witkin’s seminal work*”1#8! in scale space included the
notion that a one-dimensional signal could be unambigu-
ously segmented into regions, with one scale parameter
controlling the scale of segmentation.

A key observation is that the zero-crossings of the sec-
ond derivatives (minima and maxima of the first deriva-
tive or slope) of multi-scale-smoothed versions of a sig-
nal form a nesting tree, which defines hierarchical rela-
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tions between segments at different scales. Specifically,
slope extrema at coarse scales can be traced back to cor-
responding features at fine scales. When a slope maxi-
mum and slope minimum annihilate each other at a larger
scale, the three segments that they separated merge into
one segment, thus defining the hierarchy of segments.

14.2 Image
sketch

segmentation and primal

There have been numerous research works in this area,
out of which a few have now reached a state where they
can be applied either with interactive manual intervention
(usually with application to medical imaging) or fully au-
tomatically. The following is a brief overview of some of
the main research ideas that current approaches are based
upon.

The nesting structure that Witkin described is, however,
specific for one-dimensional signals and does not triv-
ially transfer to higher-dimensional images. Neverthe-
less, this general idea has inspired several other authors to
investigate coarse-to-fine schemes for image segmenta-
tion. Koenderink!*”! proposed to study how iso-intensity
contours evolve over scales and this approach was inves-
tigated in more detail by Lifshitz and Pizer.>"! Unfortu-
nately, however, the intensity of image features changes
over scales, which implies that it is hard to trace coarse-
scale image features to finer scales using iso-intensity in-
formation.

Lindeberg!113?! studied the problem of linking local ex-

trema and saddle points over scales, and proposed an im-
age representation called the scale-space primal sketch
which makes explicit the relations between structures at
different scales, and also makes explicit which image fea-
tures are stable over large ranges of scale including locally
appropriate scales for those. Bergholm proposed to de-
tect edges at coarse scales in scale-space and then trace
them back to finer scales with manual choice of both the
coarse detection scale and the fine localization scale.

Gauch and Pizer>! studied the complementary problem
of ridges and valleys at multiple scales and developed a
tool for interactive image segmentation based on multi-
scale watersheds. The use of multi-scale watershed with
application to the gradient map has also been investigated
by Olsen and Nielsen™ and been carried over to clini-
cal use by Dam!>! Vincken et al.’®! proposed a hyper-
stack for defining probabilistic relations between image
structures at different scales. The use of stable image
structures over scales has been furthered by Ahujal>71081
and his co-workers into a fully automated system. A
fully automatic brain segmentation algorithm based on
closely related ideas of multi-scale watersheds has been
presented by Undeman and Lindeberg!®®! and been ex-
tensively tested in brain databases.

These ideas for multi-scale image segmentation by link-
ing image structures over scales have also been picked up

16 TRAINABLE SEGMENTATION

by Florack and Kuijper.!®"! Bijaoui and Rué!®!! associate
structures detected in scale-space above a minimum noise
threshold into an object tree which spans multiple scales
and corresponds to a kind of feature in the original signal.
Extracted features are accurately reconstructed using an
iterative conjugate gradient matrix method.

15 Semi-automatic segmentation

In one kind of segmentation, the user outlines the region
of interest with the mouse clicks and algorithms are ap-
plied so that the path that best fits the edge of the image
is shown.

Techniques like SIOX, Livewire, Intelligent Scissors or
IT-SNAPS are used in this kind of segmentation. In an
alternative kind of semi-automatic segmentation, the al-
gorithms return a spatial-taxon (i.e. foreground, object-
group, object or object-part) selected by the user or des-
ignated via prior probabilities.[®?[63]

16 Trainable segmentation

Most segmentation methods are based only on color in-
formation of pixels in the image. Humans use much more
knowledge than this when doing image segmentation,
but implementing this knowledge would cost consider-
able computation time and would require a huge domain-
knowledge database, which is currently not available. In
addition to traditional segmentation methods, there are
trainable segmentation methods which can model some
of this knowledge.

Neural Network segmentation relies on processing small
areas of an image using an artificial neural network®*!
or a set of neural networks. After such processing the
decision-making mechanism marks the areas of an im-
age accordingly to the category recognized by the neural
network. A type of network designed especially for this
is the Kohonen map.

Pulse-coupled neural networks (PCNNs) are neural mod-
els proposed by modeling a cat’s visual cortex and de-
veloped for high-performance biomimetic image process-
ing. In 1989, Eckhorn introduced a neural model to emu-
late the mechanism of a cat’s visual cortex. The Eckhorn
model provided a simple and effective tool for studying
the visual cortex of small mammals, and was soon rec-
ognized as having significant application potential in im-
age processing. In 1994, the Eckhorn model was adapted
to be an image processing algorithm by Johnson, who
termed this algorithm Pulse-Coupled Neural Network.
Over the past decade, PCNNs have been utilized for a va-
riety of image processing applications, including: image
segmentation, feature generation, face extraction, motion
detection, region growing, noise reduction, and so on. A
PCNN is a two-dimensional neural network. Each neuron
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in the network corresponds to one pixel in an input image,
receiving its corresponding pixel’s color information (e.g.
intensity) as an external stimulus. Each neuron also con-
nects with its neighboring neurons, receiving local stimuli
from them. The external and local stimuli are combined
in an internal activation system, which accumulates the
stimuli until it exceeds a dynamic threshold, resulting in
a pulse output. Through iterative computation, PCNN
neurons produce temporal series of pulse outputs. The
temporal series of pulse outputs contain information of
input images and can be utilized for various image pro-
cessing applications, such as image segmentation and fea-
ture generation. Compared with conventional image pro-
cessing means, PCNNs have several significant merits,
including robustness against noise, independence of geo-
metric variations in input patterns, capability of bridging
minor intensity variations in input patterns, etc.

Open-source implementations of trainable segmen-
tation:

e Trainable Segmentation (in Java)

o IMMI

17 Other methods

There are many other methods of segmentation like
multispectral segmentation or connectivity-based seg-
mentation based on DTI images.[%!

18 Segmentation benchmarking

Several segmentation benchmarks are available for com-
paring the performance of segmentation methods with
the state-of-the-art segmentation methods on standard-
ized sets:

e Prague On-line Texture Segmentation Bench-
mark[6°!

o The Berkeley Segmentation Dataset and Bench-
mark!67!

See also

e Computer vision

e Image-based meshing

e Range image segmentation
e Vector quantization

e Image quantization

e Color quantization
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e Image Processing Research Group An Online Open
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e Segmentation methods in image processing and
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